ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing Electroweakly Interacting Massive Particles with Drell-Yan Process at 100 TeV Hadron Colliders

69   0   0.0 ( 0 )
 نشر من قبل So Chigusa
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

There are many models beyond the standard model which include electroweakly interacting massive particles (EWIMPs), often in the context of the dark matter. In this paper, we study the indirect search of EWIMPs using a precise measurement of the Drell-Yan cross sections at future $100,{rm TeV}$ hadron colliders. It is revealed that this search strategy is suitable in particular for Higgsino and that the Higgsino mass up to about $1.3,{rm TeV}$ will be covered at $95,%$ C.L. irrespective of the chargino and neutralino mass difference. We also show that the study of the Drell-Yan process provides important and independent information about every kind of EWIMP in addition to Higgsino.

قيم البحث

اقرأ أيضاً

There are many extensions of the standard model that predict the existence of electroweakly interacting massive particles (EWIMPs), in particular in the context of the dark matter. In this paper, we provide a way for indirectly studying EWIMPs throug h the precise study of the pair production processes of charged leptons or that of a charged lepton and a neutrino at future 100 TeV collider experiments. It is revealed that this search method is suitable in particular for Higgsino, providing us the $5sigma$ discovery reach of Higgsino in supersymmetric model with mass up to 850 GeV. We also discuss how accurately one can extract the mass, gauge charge, and spin of EWIMPs in our method.
Electroweakly Interacting Massive Particles (EWIMPs), in other words, new massive particles that are charged under the electroweak interaction of the Standard Model (SM), are often predicted in various new physics models. EWIMPs are probed at hadron collider experiments not only by observing their direct productions but also by measuring their quantum effects on Drell-Yan processes for SM lepton pair productions. Such effects are known to be enhanced especially when the di-lepton invariant mass of the final state is close to the EWIMP threshold, namely twice the EWIMP mass. In such a mass region, however, we have to carefully take non-perturbative effects into account, because the EWIMPs become non-relativistic and the prediction may be significantly affected by e.g., bound states of the EWIMPs caused by the electroweak interaction. We study such non-perturbative effects using the non-relativistic effective field theory of the EWIMPs, and found that those indeed affect the differential cross section of the Drell-Yan processes significantly, though the effects are smeared due to the finite energy resolution of the lepton measurement at the Large Hadron Collider experiment.
101 - George Fai , 2004
The transverse-momentum ($Q_T$) distribution of low-mass Drell-Yan pairs is calculated in QCD perturbation theory with all-order resummation of $alpha_s (alpha_s ln(Q^2_T/Q^2))^n$ type terms. We demonstrate that the rapidity distribution of low-mass Drell-Yan pairs at large-enough transverse momentum is an advantageous source of constraints on the gluon distribution and its nuclear dependence. We argue that low-mass Drell-Yan pairs in the forward region provide a good and clean probe of small-$x$ gluons at collider energies.
We analyze the Drell-Yan lepton pair production at forward rapidity at the Large Hadron Collider. Using the dipole framework for the computation of the cross section we find a significant suppression in comparison to the collinear factorization formu la due to saturation effects in the dipole cross section. We develop a twist expansion in powers of Q_s^2/M^2 where Q_s is the saturation scale and M the invariant mass of the produced lepton pair. For the nominal LHC energy the leading twist description is sufficient down to masses of 6 GeV. Below that value the higher twist terms give a significant contribution.
We review the theoretical motivations and experimental status of searches for stable massive particles (SMPs) which could be sufficiently long-lived as to be directly detected at collider experiments. The discovery of such particles would address a n umber of important questions in modern physics including the origin and composition of dark matter in the universe and the unification of the fundamental forces. This review describes the techniques used in SMP-searches at collider experiments and the limits so far obtained on the production of SMPs which possess various colour, electric and magnetic charge quantum numbers. We also describe theoretical scenarios which predict SMPs and the phenomenology needed to model their production at colliders and interactions with matter. In addition, the interplay between collider searches and open questions in cosmology is addressed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا