ﻻ يوجد ملخص باللغة العربية
On four-dimensional closed manifolds we introduce a class of canonical Riemannian metrics, that we call weak harmonic Weyl metrics, defined as critical points in the conformal class of a quadratic functional involving the norm of the divergence of the Weyl tensor. This class includes Einstein and, more in general, harmonic Weyl manifolds. We prove that every closed four-manifold admits a weak harmonic Weyl metric, which is the unique (up to dilations) minimizer of the functional in a suitable conformal class. In general the problem is degenerate elliptic due to possible vanishing of the Weyl tensor. In order to overcome this issue, we minimize the functional in the conformal class determined by a reference metric, constructed by Aubin, with nowhere vanishing Weyl tensor. Moreover, we show that anti-self-dual metrics with positive Yamabe invariant can be characterized by pinching conditions involving suitable quadratic Riemannian functionals.
We introduce a general notion of twistorial map and classify twistorial harmonic morphisms with one-dimensional fibres from self-dual four-manifolds. Such maps can be characterised as those which pull back Abelian monopoles to self-dual connections.
In this paper, we prove that the deformed Riemannian extension of any affine Szabo manifold is a Szabo pseudo-Riemannian metric and vice-versa. We proved that the Ricci tensor of an affine surface is skew-symmetric and nonzero everywhere if and only
In this paper, we employ a nonlocal $Q$-curvature flow inspired by Gursky-Malchiodis work cite{gur_mal} to solve the prescribed $Q$-curvature problem on a class of closed manifolds: For $n geq 5$, let $(M^n,g_0)$ be a smooth closed manifold, which is
Let $(M,g)$ be a complete three dimensional Riemannian manifold with boundary $partial M$. Given smooth functions $K(x)>0$ and $c(x)$ defined on $M$ and $partial M$, respectively, it is natural to ask whether there exist metrics conformal to $g$ so t
We prove that, from an Einstein manifold of dimension greater than or equal to five, there are just two types of harmonic morphism with one-dimensional fibres. This generalizes a result of R.L. Bryant who obtained the same conclusion under the assumption that the domain has constant curvature.