ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymmetry Observables and the Origin of $R_{D^{(*)}}$ Anomalies

75   0   0.0 ( 0 )
 نشر من قبل Pouya Asadi
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The $R_{D^{(*)}}$ anomalies are among the longest-standing and most statistically significant hints of physics beyond the Standard Model. Many models have been proposed to explain these anomalies, including the interesting possibility that right-handed neutrinos could be involved in the $B$ decays. In this paper, we investigate future measurements at Belle II that can be used to tell apart the various new physics scenarios. Focusing on a number of $tau$ asymmetry observables (forward-backward asymmetry and polarization asymmetries) which can be reconstructed at Belle II, we calculate the contribution of the most general dimension 6 effective Hamiltonian (including right-handed neutrinos) to all of these asymmetries. We show that Belle II can use these asymmetries to distinguish between new-physics scenarios that use right- and left-handed neutrinos, and in most cases can likely distinguish the specific model itself.



قيم البحث

اقرأ أيضاً

Measurements of the $R_{D^*}$ parameter remain in tension with the standard model prediction, despite recent results helping to close the gap. In this work, we revisit the standard model considerations for the prediction. We pay particular attention to the theoretical prediction considering the full 4-body decay $(Brightarrow l u D^* to l u Dpi)$, which introduces the longitudinal degree of freedom of the $D^*$. We show that this does not introduce sizeable effects at the current precision. This modifies our previous finding (Phys. Rev. D 98 056014 (2018)) where a numerical bug led us to a different conclusion. Thus, the results on $R_{Dpi}$ are consistent with $R_{D^*}$, and the difference between the several values can be traced back to the form factor used and the restrictions incorporated to determine their parameters. There is still tension between the experimental world average and the most accurate theoretical estimate, leaving the possibility of presence of new physics scenarios open.
259 - Ryoutaro Watanabe 2018
Recent theoretical developments on $R_D$ and $R_{D^*}$ -- discrepancies between experimental data and the Standard Model predictions have been reported (B anomaly) -- are reviewed. New Physics explanations for the B anomaly and other relevant observa bles to obtain additional bounds on New Physics are also summarized. This is the proceedings for the talk at CIPANP2018 which was held on May 29 2018.
$R_K$ and $R_{D^{(*)}}$ are two $B$-decay measurements that presently exhibit discrepancies with the SM. Recently, using an effective field theory approach, it was demonstrated that a new-physics model can simultaneously explain both the $R_K$ and $R _{D^{(*)}}$ puzzles. There are two UV completions that can give rise to the effective Lagrangian: (i) $VB$: a vector boson that transforms as an $SU(2)_L$ triplet, as in the SM, (ii) $U_1$: an $SU(2)_L$-singlet vector leptoquark. In this paper, we examine these models individually. A key point is that $VB$ contributes to $B^0_s$-${bar B}^0_s$ mixing and $tau to 3mu$, while $U_1$ does not. We show that, when constraints from these processes are taken into account, the $VB$ model is just barely viable. It predicts ${cal B} (tau^-tomu^-mu^+mu^-) simeq 2.1 times 10^{-8}$. This is measurable at Belle II and LHCb, and therefore constitutes a smoking-gun signal of $VB$. For $U_1$, there are several observables that may point to this model. Perhaps the most interesting is the lepton-flavor-violating decay $Upsilon(3S) to mu tau$, which has previously been overlooked in the literature. $U_1$ predicts ${cal B}(Upsilon(3S) to mu tau)|_{rm max} = 8.0 times 10^{-7}$. Thus, if a large value of ${cal B}(Upsilon(3S) to mu tau)$ is observed -- and this should be measurable at Belle II -- the $U_1$ model would be indicated.
The Drell-Yan cross section ratios, $sigma(p+d)/sigma(p+p)$, measured in Fermilab E866, have led to the first determination of $bar d(x) / bar u(x)$, $bar d(x) - bar u(x)$, and the integral of $bar d(x) - bar u(x)$ for the proton over the range $0.02 le x le 0.345$. The E866 results are compared with predictions based on parton distribution functions and various theoretical models. The relationship between the E866 results and the NMC measurement of the Gottfried integral is discussed. The agreement between the E866 results and models employing virtual mesons indicates these non-perturbative processes play an important role in the origin of the $bar d$, $bar u$ asymmetry in the nucleon sea.
There has been persistent disagreement between the Standard Model (SM) prediction and experimental measurements of $R_{D^{(*)}}=mathcal{B}(bar B rightarrow D^{(*)} tau bar u_tau)/mathcal{B}(bar B rightarrow D^{(*)} l bar u_l)$ $(l=e,mu)$. This anomal y may be addressed by introducing interactions beyond the Standard Model involving new states, such as leptoquarks. Since the processes involved are quark flavor changing, any new states would need to couple to at least two different generations of quarks, requiring a non-trivial flavor structure in the quark sector while avoiding stringent constraints from flavor-changing neutral current processes. In this work, we look at scalar leptoquarks as a possible solution for the $R_{D^{(*)}}$ anomaly under the assumption of $it{minimal~flavor~violation}$ (MFV). We investigate all possible representations for the leptoquarks under the SM quark flavor symmetry group, consistent with asymptotic freedom. We consider constraints on their parameter space from self-consistency of the MFV scenario, perturbativity, the FCNC decay $bto sbar u u$ and precision electroweak observables. We find that none of the scalar leptoquarks can explain the $R_{D^{(*)}}$ anomaly while simultaneously avoiding all constraints within this scenario. Thus scalar leptoquarks with MFV-generated quark couplings do not work as a solution to the $R_{D^{(*)}}$ anomaly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا