ﻻ يوجد ملخص باللغة العربية
One of the outstanding questions in astronomy today is how gas flows from the circumgalactic medium (CGM) onto the disks of galaxies and then transitions from the diffuse atomic medium into molecular star-forming cores. For studies of the CGM, the Next Generation Very Large Array (ngVLA) will have the sensitivity and resolution to measure the sizes of the neutral atomic hydrogen (HI) disks of galaxies and complete a census of the HI content around galaxies. Within galaxies, the ngVLA will be able to resolve HI clouds in large numbers of galaxies beyond the Local Group providing measurements of the physical conditions of gas across a wide range of galaxy types. Finally, within our own Milky Way, the ngVLA will provide a dense grid of HI absorption spectra in the cold and warm neutral medium constraining the temperature and density of atomic gas as it transitions into molecular gas. Combined with radio continuum and molecular line data from the ngVLA plus multi-wavelength data from other planned facilities, ngVLA will have a key role in understanding star-formation in the local universe while complementing future studies with the Square Kilometer Array.
Gas density is widely believed to play a governing role in star formation. However, the exact role of density in setting the star formation rate remains debated. We also lack a general theory that explains how the gas density distribution in galaxies
Planets assemble in the midplanes of protoplanetary disks. The compositions of dust and gas in the disk midplane region determine the compositions of nascent planets, including their chemical hospitality to life. In this context, the distributions of
Most massive galaxies are now thought to go through an Active Galactic Nucleus (AGN) phase one or more times. Yet, the cause of triggering and the variations in the intrinsic and observed properties of AGN population are still poorly understood. Youn
Extraterrestrial amino acids, the chemical building blocks of the biopolymers that comprise life as we know it on Earth are present in meteoritic samples. More recently, glycine (NH$_2$CH$_2$COOH), the simplest amino acid, was detected by the Rosetta
The science case and associated science requirements for a next-generation Very Large Array (ngVLA) are described, highlighting the five key science goals developed out of a community-driven vision of the highest scientific priorities in the next dec