ﻻ يوجد ملخص باللغة العربية
We present a method to measure quadratic Terahertz optical nonlinearities in Terahertz time-domain spectroscopy. We use a rotating linear polarizer (a polarizing chopper) to modulate the amplitude of the incident THz pulse train. We use a phase-sensitive lock-in detection at the fundamental and the second harmonic of the modulation frequency to separate the materials responses that are linear and quadratic in Terahertz electric field. We demonstrate this method by measuring the quadratic Terahertz Kerr effect in the presence of the much stronger linear electro-optic effect in the (110) GaP crystal. We propose that the method can be used to detect Terahertz second harmonic generation in noncentrosymmetric media in time-domain spectroscopy, with broad potential applications in nonlinear Terahertz photonics and related technology.
Atomically thin transition metal dichalcogenides are highly promising for integrated optoelectronic and photonic systems due to their exciton-driven linear and nonlinear interaction with light. Integrating them into optical fibers yields novel opport
Light with light control of surface plasmon polaritons is theoretically demonstrated. A barely simple and compact source of these waves consists in a finite number of slits (evenly spaced) perforating a metal film. The system scatters electromagnetic
We present an electrically switchable graphene terahertz (THz) modulator with a tunable-by-design optical bandwidth and we exploit it to compensate the cavity dispersion of a quantum cascade laser (QCL). Electrostatic gating is achieved by a metal-gr
We report ionic strength-dependent phase shifts in second harmonic generation (SHG) signals from charged interfaces that verify a recent model in which dispersion between the fundamental and second harmonic beams modulates observed signal intensities
Graphene offers a possibility for actively controlling plasmon confinement and propagation by tailoring its spatial conductivity pattern. However, implementation of this concept has been hampered because uncontrollable plasmon reflection is easily in