ترغب بنشر مسار تعليمي؟ اضغط هنا

Fuzzy Adaptive Tuning of a Particle Swarm Optimization Algorithm for Variable-Strength Combinatorial Test Suite Generation

245   0   0.0 ( 0 )
 نشر من قبل Bestoun Ahmed Dr.
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Combinatorial interaction testing is an important software testing technique that has seen lots of recent interest. It can reduce the number of test cases needed by considering interactions between combinations of input parameters. Empirical evidence shows that it effectively detects faults, in particular, for highly configurable software systems. In real-world software testing, the input variables may vary in how strongly they interact, variable strength combinatorial interaction testing (VS-CIT) can exploit this for higher effectiveness. The generation of variable strength test suites is a non-deterministic polynomial-time (NP) hard computational problem cite{BestounKamalFuzzy2017}. Research has shown that stochastic population-based algorithms such as particle swarm optimization (PSO) can be efficient compared to alternatives for VS-CIT problems. Nevertheless, they require detailed control for the exploitation and exploration trade-off to avoid premature convergence (i.e. being trapped in local optima) as well as to enhance the solution diversity. Here, we present a new variant of PSO based on Mamdani fuzzy inference system cite{Camastra2015,TSAKIRIDIS2017257,KHOSRAVANIAN2016280}, to permit adaptive selection of its global and local search operations. We detail the design of this combined algorithm and evaluate it through experiments on multiple synthetic and benchmark problems. We conclude that fuzzy adaptive selection of global and local search operations is, at least, feasible as it performs only second-best to a discrete variant of PSO, called DPSO. Concerning obtaining the best mean test suite size, the fuzzy adaptation even outperforms DPSO occasionally. We discuss the reasons behind this performance and outline relevant areas of future work.



قيم البحث

اقرأ أيضاً

Flower Pollination Algorithm (FPA) is the new breed of metaheuristic for the general optimization problem. In this paper, an improved algorithm based on Flower Pollination Algorithm (FPA), called imFPA, has been proposed. In imFPA, the static selecti on probability is replaced by the dynamic solution selection probability in order to enhance the diversification and intensification of the overall search process. Experimental adoptions on combinatorial t- way test suite generation problem (where t indicates the interaction strength) show that imFPA produces very competitive results as compared to existing strategies.
Although showing competitive performances in many real-world optimization problems, Teaching Learning based Optimization Algorithm (TLBO) has been criticized for having poor control on exploration and exploitation. Addressing these issues, a new vari ant of TLBO called Adaptive Fuzzy Teaching Learning based Optimization (ATLBO) has been developed in the literature. This paper describes the adoption of Fuzzy Adaptive Fuzzy Teaching Learning based Optimization (ATLBO) for software module clustering problem. Comparative studies with the original Teaching Learning based Optimization (TLBO) and other Fuzzy TLBO variant demonstrate that ATLBO gives superior performance owing to its adaptive selection of search operators based on the need of the current search.
In fitting data with a spline, finding the optimal placement of knots can significantly improve the quality of the fit. However, the challenging high-dimensional and non-convex optimization problem associated with completely free knot placement has b een a major roadblock in using this approach. We present a method that uses particle swarm optimization (PSO) combined with model selection to address this challenge. The problem of overfitting due to knot clustering that accompanies free knot placement is mitigated in this method by explicit regularization, resulting in a significantly improved performance on highly noisy data. The principal design choices available in the method are delineated and a statistically rigorous study of their effect on performance is carried out using simulated data and a wide variety of benchmark functions. Our results demonstrate that PSO-based free knot placement leads to a viable and flexible adaptive spline fitting approach that allows the fitting of both smooth and non-smooth functions.
Combinatorial testing has been suggested as an effective method of creating test cases at a lower cost. However, industrially applicable tools for modeling and combinatorial test generation are still scarce. As a direct effect, combinatorial testing has only seen a limited uptake in industry that calls into question its practical usefulness. This lack of evidence is especially troublesome if we consider the use of combinatorial test generation for industrial safety-critical control software, such as are found in trains, airplanes, and power plants. To study the industrial application of combinatorial testing, we evaluated ACTS, a popular tool for combinatorial modeling and test generation, in terms of applicability and test efficiency on industrial-sized IEC 61131-3 industrial control software running on Programmable Logic Controllers (PLC). We assessed ACTS in terms of its direct applicability in combinatorial modeling of IEC 61131-3 industrial software and the efficiency of ACTS in terms of generation time and test suite size. We used 17 industrial control programs provided by Bombardier Transportation Sweden AB and used in a train control management system. Our results show that not all combinations of algorithms and interaction strengths could generate a test suite within a realistic cut-off time. The results of the modeling process and the efficiency evaluation of ACTS are useful for practitioners considering to use combinatorial testing for industrial control software as well as for researchers trying to improve the use of such combinatorial testing techniques.
Context: Combinatorial testing strategies have lately received a lot of attention as a result of their diverse applications. In its simple form, a combinatorial strategy can reduce several input parameters (configurations) of a system into a small se t based on their interaction (or combination). In practice, the input configurations of software systems are subjected to constraints, especially in case of highly configurable systems. To implement this feature within a strategy, many difficulties arise for construction. While there are many combinatorial interaction testing strategies nowadays, few of them support constraints. Objective: This paper presents a new strategy, to construct combinatorial interaction test suites in the presence of constraints. Method: The design and algorithms are provided in detail. To overcome the multi-judgment criteria for an optimal solution, the multi-objective particle swarm optimization and multithreading are used. The strategy and its associated algorithms are evaluated extensively using different benchmarks and comparisons. Results: Our results are promising as the evaluation results showed the efficiency and performance of each algorithm in the strategy. The benchmarking results also showed that the strategy can generate constrained test suites efficiently as compared to state-of-the-art strategies. Conclusion: The proposed strategy can form a new way for constructing of constrained combinatorial interaction test suites. The strategy can form a new and effective base for future implementations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا