ترغب بنشر مسار تعليمي؟ اضغط هنا

Room temperature cavity polaritons with 3D hybrid perovskite - Towards low-cost polaritonic devices

321   0   0.0 ( 0 )
 نشر من قبل Paul Bouteyre
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hybrid halide perovskites are now considered as low-cost materials for contemporary research in photovoltaics and nanophotonics. In particular, because these materials can be solution processed, they represent a great hope for obtaining low-cost devices. While the potential of 2D layered hybrid perovskites for polaritonic devices operating at room temperature has been demonstrated in the past, the potential of the 3D perovskites has been much less explored for this particular application. Here, we report the strong exciton-photon coupling with 3D bromide hybrid perovskite. Cavity polaritons are experimentallly demonstrated from both reflectivity and photoluminescence experiments, at room temperature, in a 3$lambda$/2 planar microcavity containing a large surface spin-coated $CH_3NH_3PbBr_3$ thin film. A microcavity quality factor of 92 was found and a large Rabi splitting of 70 meV was measured. This result paves the way to low-cost polaritonic devices operating at room temperature, potentially electrically injectable as 3D hybrid perovskites present good transport properties.

قيم البحث

اقرأ أيضاً

Polaritonic devices exploit the coherent coupling between excitonic and photonic degrees of freedom to perform highly nonlinear operations with low input powers. Most of the current results exploit excitons in epitaxially grown quantum wells and requ ire low temperature operation, while viable alternatives have yet to be found at room temperature. Here we show that large single-crystal flakes of two-dimensional layered perovskite are able to sustain strong polariton nonlinearities at room temperature with no need to be embedded in an optical cavity. In particular, exciton-exciton interaction energies are measured to be remarkably similar to the ones known for inorganic quantum wells at cryogenic temperatures, and more than one order of magnitude larger than alternative room temperature polariton devices reported so far. Thanks to their easy fabrication, large dipolar oscillator strengths and strong nonlinearities, these materials hold great promises to realize actual polariton devices at room temperature.
157 - Wei Bao , Xiaoze Liu , Fei Xue 2018
The condensation of half-light half-matter exciton polaritons in semiconductor optical cavities is a striking example of macroscopic quantum coherence in a solid state platform. Quantum coherence is possible only when there are strong interactions be tween the exciton polaritons provided by their excitonic constituents. Rydberg excitons with high principle value exhibit strong dipole-dipole interactions in cold atoms. However, polaritons with the excitonic constituent that is an excited state, namely Rydberg exciton polaritons (REPs), have not yet been experimentally observed. Here, for the first time, we observe the formation of REPs in a single crystal CsPbBr3 perovskite cavity without any external fields. These polaritons exhibit strong nonlinear behavior that leads to a coherent polariton condensate with a prominent blue shift. Furthermore, the REPs in CsPbBr3 are highly anisotropic and have a large extinction ratio, arising from the perovskites orthorhombic crystal structure. Our observation not only sheds light on the importance of many-body physics in coherent polariton systems involving higher-order excited states, but also paves the way for exploring these coherent interactions for solid state quantum optical information processing.
221 - B. X. Wang , C. Y. Zhao 2019
We theoretically investigate the application of topological plasmon polaritons (TPPs) to temperature sensing for the first time. Based on an analogy of the topological edge states in the Su-Schrieffer-Heeger model, TPPs are realized in a one-dimensio nal intrinsic indium antimonide (InSb) microsphere chain. The existence of TPPs is demonstrated by analyzing the topology of the photonic band structures and the eigenmode distribution. By exploiting the temperature dependence of the permittivity of InSb in the terahertz range, the resonance frequency of the TPPs can be largely tuned by the temperature. Moreover, it is shown that the temperature sensitivity of the TPP resonance frequency can be as high as $0.0264~mathrm{THz/K}$ at room temperature, leading to a figure of merit over 150. By calculating the LDOS near the chain, we further demonstrate that the temperature sensitivity of TPPs is experimentally detectable via near-field probing techniques. This sensitivity is robust since TPPs are highly protected modes immune to disorder and can achieve a strong confinement of radiation. We envisage these TPPs can be utilized as promising candidates for robust and enhanced temperature sensing.
We report the room-temperature electroluminescence (EL) with nearly pure circular polarization (CP) from GaAs-based spin-polarized light-emitting diodes (spin-LEDs). External magnetic fields are not used during device operation. There are two small s chemes in the tested spin-LEDs: firstly, the stripe-laser-like structure that helps intensifying the EL light at the cleaved side walls below the spin injector Fe slab, and secondly, the crystalline AlOx spin tunnel barrier that ensures electrically stable device operation. The purity of CP is depressively low in the low current density (J) region, whereas it increases steeply and reaches close to the pure CP when J = 100 A/cm2. There, either right- or left-handed CP component is significantly suppressed depending on the direction of magnetization of the spin injector. Spin-dependent re-absorption, spin-induced birefringence and optical spin-axis conversion are suggested to account for the observed experimental results.
we investigate the transmission of probe laser beam in a coupled-cavity system with polaritons by using standard input-output relation of optical fields, and proposed a theoretical schema for realizing a polariton-based photonic transistor. On accoun t of effects of exciton-photon coupling and single-photon optomechanical coupling, a probe laser field can be either amplified or attenuated by another pump laser field when it passes through a coupled-cavity system with polaritons. The Stokes and anti-Stokes scattered effect of output prober laser can also be modulated. Our results open up exciting possibilities for designing photonic transistors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا