ﻻ يوجد ملخص باللغة العربية
We present a new approach based on the static density functional theory (DFT) to describe paramagentic MnO, which is a representative paramagnetic Mott insulator. We appended the spin noncollinearity and the canonical ensemble to the magnetic sampling method (MSM), which is one of the supercell approaches based on disordered local moment model. The combination of the noncollinear MSM (NCMSM) with DFT$+U$ represents a highly favorable computational method called NCMSM$+U$ to accurately determine the paramagnetic properties of MnO with moderate numerical cost. The effects of electron correlations and spin noncollinearity on the properties of MnO were also investigated. We revealed that the spin noncollinearity plays an important role in determining the detailed electronic profile and precise energetics of paramagnetic MnO. Our results illustrate that the NCMSM$+U$ approach may be used as an alternative to the $textit{ab initio}$ framework of dynamic mean field theory based on DFT in the simulation of the high-temperature properties of Mott insulators.
The metal-insulator transition in correlated electron systems, where electron states transform from itinerant to localized, has been one of the central themes of condensed matter physics for more than half a century. The persistence of this question
In Mott insulators, the strong electron-electron Coulomb repulsion prevents metallicity and charge excitations are gapped. In dimensions greater than one, their spins are usually ordered antiferromagnetically at low temperatures. Geometrical frustrat
A method for analytic continuation of imaginary-time correlation functions (here obtained in quantum Monte Carlo simulations) to real-frequency spectral functions is proposed. Stochastically sampling a spectrum parametrized by a large number of delta
The electronic structure, magnetic moment, and volume collapse of MnO under pressure are obtained from four different correlated band theory methods; local density approximation + Hubbard U (LDA+U), pseudopotential self-interaction correction (pseudo
Results are presented of single crystal structural, thermodynamic, and reflectivity measurements of the double-perovskite Ba2NaOsO6. These characterize the material as a 5d^1 ferromagnetic Mott insulator with an ordered moment of ~0.2 Bohr magnetons