ﻻ يوجد ملخص باللغة العربية
We introduce here a new axiomatisation of the rational fragment of the ZX-calculus, a diagrammatic language for quantum mechanics. Compared to the previous axiomatisation introduced in [8], our axiomatisation does not use any metarule , but relies instead on a more natural rule, called the cyclotomic supplementarity rule, that was introduced previously in the literature. Our axiomatisation is only complete for diagrams using rational angles , and is not complete in the general case. Using results on diophantine geometry, we characterize precisely which diagram equality involving arbitrary angles are provable in our framework without any new axioms, and we show that our axiomatisation is continuous, in the sense that a diagram equality involving arbitrary angles is provable iff it is a limit of diagram equalities involving rational angles. We use this result to give a complete characterization of all Euler equations that are provable in this axiomatisation.
ZX-calculus is graphical language for quantum computing which usually focuses on qubits. In this paper, we generalise qubit ZX-calculus to qudit ZX-calculus in any finite dimension by introducing suitable generators, especially a carefully chosen tri
ZX-calculus is a graphical language for quantum computing which is complete in the sense that calculation in matrices can be done in a purely diagrammatic way. However, all previous universally complete axiomatisations of ZX-calculus have included at
To approximate arbitrary unitary transformations on one or more qubits, one must perform transformations which are outside of the Clifford group. The gate most commonly considered for this purpose is the T = diag(1, exp(i pi/4)) gate. As T gates are
ZX-calculus is a strict mathematical formalism for graphical quantum computing which is based on the field of complex numbers. In this paper, we extend its power by generalising ZX-calculus to such an extent that it is universal both in an arbitrary
In this paper we exploit the utility of the triangle symbol which has a complicated expression in terms of spider diagrams in ZX-calculus, and its role within the ZX-representation of AND-gates in particular. First, we derive spider nest identities w