ﻻ يوجد ملخص باللغة العربية
The 1/8 fractional plateau phase (1/8-FPP) in Shastry-Sutherland Lattice (SSL) spin systems has been viewed an exemplar of emergence on an Archimedean lattice. Here we explore this phase in the Ising magnet TmB4 using high-resolution specific heat (C) and magnetization (M) in the field-temperature plane. We show that the 1/8-FPP is smoothly connected to the antiferromagnetic (AF) phase on ramping the field from H= 0. Thus, the 1/8-FPP is not a distinct ground state of TmB4. The implication of these results for Heisenberg spins on the SSL is discussed.
We investigate the phase diagram of TmB4, an Ising magnet on a frustrated Shastry-Sutherland lattice by neutron diffraction and magnetization experiments. At low temperature we find Neel order at low field, ferrimagnetic order at high field and an in
We report the microscopic magnetic model for the spin-1/2 Heisenberg system CdCu2(BO3)2, one of the few quantum magnets showing the 1/2-magnetization plateau. Recent neutron diffraction experiments on this compound [M. Hase et al., Phys. Rev. B 80, 1
The Shastry-Sutherland model and its generalizations have been shown to capture emergent complex magnetic properties from geometric frustration in several quasi-two-dimensional quantum magnets. Using an $sd$ exchange model, we show here that metallic
We use the non-perturbative Contractor-Renormalization method (CORE) in order to derive an effective model for triplet excitations on the Shastry-Sutherland lattice. For strong enough magnetic fields, various magnetization plateaux are observed, e.g.
Using the density-matrix renormalization group method for the ground state and excitations of the Shastry-Sutherland spin model, we demonstrate the existence of a narrow quantum spin liquid phase between the previously known plaquette-singlet and ant