ﻻ يوجد ملخص باللغة العربية
Graphene nanoribbons (GNRs) have recently been shown by Cao, Zhao, and Louie [Cao, T.; Zhao, F.; Louie, S. G. Phys. Rev. Lett. 2017, 119, 076401] to possess distinct topological phases in general, characterized by a Z2 invariant. Cove-edged and chevron GNRs moreover are chemically and structurally diverse, quasi-one-dimensional (1D) nanostructures whose structure and electronic properties can be rationally controlled by bottom-up synthesis from precursor molecules. We derive the value of the topological invariant of the different types of cove-edged and chevron GNRs, and we investigate the electronic properties of various junctions formed by these GNRs, as well as such GNRs with the more common armchair or zigzag GNRs. We study the topological junction states at the interface of two topologically distinct segments. For an isolated GNR having two ends of different terminations, topological end states are shown to develop only at the topologically nontrivial end. Our work extends the explicit categorization of topological invariants of GNRs beyond the previously demonstrated armchair GNRs and provides new design rules for novel GNR junctions as well as future GNR-based nanoelectronic devices.
Knowledge of the topology of the electronic ground state of materials has led to deep insights to novel phenomena such as the integer quantum Hall effect and fermion-number fractionalization, as well as other properties of matter. Joining two insulat
We investigate quantum transport properties of triangular graphene flakes with zigzag edges by using first principles calculations. Triangular graphene flakes have large magnetic moments which vary with the number of hydrogen atoms terminating its ed
Graphene nanoribbons (GNRs) possess distinct symmetry-protected topological phases. We show, through first-principles calculations, that by applying an experimentally accessible transverse electric field (TEF), certain boron and nitrogen periodically
A recent experimental study showed that an induced folded flap of graphene can spontaneously drive itself its tearing and peeling off a substrate, thus producing long, micrometer sized, regular trapezoidal-shaped folded graphene nanoribbons. As long
In topological systems, a modulation in the gap onset near interfaces can lead to the appearance of massive edge states, as were first described by Volkov and Pankratov. In this work, we study graphene nanoribbons in the presence of intrinsic spin-or