ﻻ يوجد ملخص باللغة العربية
We use the current CMS and ATLAS data for the leptonic $pp to WW, WZ$ channels to show that diboson production is, for a broad class of flavour models, already competitive with LEP-1 measurements for setting bounds on the dimension six operators parametrising the anomalous couplings between the quarks and the electroweak gauge bosons, at least under the assumption that any new particle is heavier than a few TeV. We also make an estimate of the HL-LHC reach with $3$ ab$^{-1}$. We comment on possible BSM interpretations of the bounds, and show the interplay with other searches for a simplified model with vector triplets. We further study the effect of modified $Z$-quark-quark couplings on the anomalous triple gauge coupling bounds. We find that their impact is already significant and that it could modify the constraints on $delta g_{1z}$ and $delta kappa_gamma$ by as much as a factor two at the end of HL-LHC ($lambda_gamma$ is only marginally affected), requiring a global fit to extract robust bounds. We stress the role of flavour assumptions and study explicitly flavour universal and minimal flavour violation scenarios, illustrating the differences with results obtained for universal theories.
We propose novel collider searches which can significantly improve the LHC reach to new gauge bosons $Z$ with mixed anomalies with the electroweak (EW) gauge group. Such a $Z$ necessarily acquires a Chern-Simons coupling to the EW gauge bosons and th
The first run of the LHC showed hints of a new resonance with mass near $1.9$ TeV decaying into electroweak gauge boson pairs as well as into dijets. While Run 2 has neither confirmed nor ruled out such a resonance, it has yielded new constraints on
The ATLAS collaboration has recently reported a 2.6 sigma excess in the search for a heavy resonance decaying into a pair of weak gauge bosons. Only fully hadronic final states are being looked for in the analysis. If the observed excess really origi
We discuss NMSSM scenarios in which the lightest Higgs boson $h_1$ is consistent with the small LEP excess at about 98 GeV in $e^+e^- to Zh$ with $hto banti b$ and the heavier Higgs boson $h_2$ has the primary features of the LHC Higgs-like signals a
Within the Minimal Supersymmetric Standard Model (MSSM), we study the production of the neutral scalar and pseudoscalar as well as the charged Higgs bosons together with fermions or sfermions in deep inelastic $ep$ scattering at $sqrt{s}=1.6$ TeV. We