ترغب بنشر مسار تعليمي؟ اضغط هنا

Phenomenology of two texture zero neutrino mass in left-right symmetric model with $Z_8 times Z_2$

93   0   0.0 ( 0 )
 نشر من قبل Mrinal Kumar Das
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We have done a phenomenological study on the neutrino mass matrix $M_ u$ favoring two zero texture in the framework of left-right symmetric model (LRSM) where type I and type II seesaw naturally occurs. The type I seesaw mass term is considered to be following a trimaximal mixing (TM) pattern. The symmetry realizations of these texture zero structures has been realized using the discrete cyclic abelian $Z8times Z2$ group in LRSM. We have studied six of the popular texture zero classes named as A1, A2, B1, B2, B3 and B4 favoured by neutrino oscillation data in our analysis. We basically focused on the implications of these texture zero mass matrices in low energy phenomenon like neutrinoless double beta decay (NDBD) and lepton flavour violation (LFV) in LRSM scenario. For NDBD, we have considered only the dominant new physics contribution coming from the diagrams containing purely RH current and another from the charged Higgs scalar while ignoring the contributions coming from the left-right gauge boson mixing and heavy light neutrino mixing. The mass of the extra gauge bosons and scalars has been considered to be of the order of TeV scale which is accessible at the colliders.



قيم البحث

اقرأ أيضاً

We present a minimal left-right symmetric flavor model and analyze the predictions for the neutrino sector. In this scenario, the Yukawa sector is shaped by the dihedral $D_4$ symmetry which leads to correlations for the neutrino mixing parameters. W e end up with four possible solutions within this model. We further analyzed the impact of the upcoming long-baseline neutrino oscillation experiment DUNE. Due to its high sensitivity, DUNE will be able to rule out two of the solutions. Finally, the prediction for the neutrinoless double beta decay for the model has also been examined.
We studied the phenomenological implications of texture zeros in the neutrino mass matrix of the minimal left-right symmetric model (LRSM). Since the possibility of maximum zeros reduces the maximum number of free parameters of the model making it mo re predictive, we considered only those cases with maximum possible texture zeros in light neutrino mass matrix $M_{ u}$, Dirac neutrino mass matrix $M_D$ and heavy right-handed (RH) neutrino mass matrix $M_{RR}$. We then computed the correlations among the different light neutrino parameters and then the new physics contributions to neutrinoless double beta decay (NDBD) for the different texture zero cases. We find that for RH neutrino masses above 1 GeV, the new physics contributions to NDBD can saturate the corresponding experimental bound.
We consider the possibility of texture zeros in lepton mass matrices of the minimal left-right symmetric model (LRSM) where light neutrino mass arises from a combination of type I and type II seesaw mechanisms. Based on the allowed texture zeros in l ight neutrino mass matrix from neutrino and cosmology data, we make a list of all possible allowed and disallowed texture zeros in Dirac and heavy neutrino mass matrices which appear in type I and type II seesaw terms of LRSM. For the numerical analysis we consider those cases with maximum possible texture zeros in light neutrino mass matrix $M_{ u}$, Dirac neutrino mass matrix $M_D$, heavy neutrino mass matrix $M_{RR}$ while keeping the determinant of $M_{RR}$ non-vanishing, in order to use the standard type I seesaw formula. The possibility of maximum zeros reduces the free parameters of the model making it more predictive. We then compute the new physics contributions to rare decay processes like neutrinoless double beta decay, charged lepton flavour violation. We find that even for a conservative lower limit on a left-right symmetry scale corresponding to heavy charged gauge boson mass 4.5 TeV, in agreement with collider bounds, for right-handed neutrino masses above 1 GeV, the new physics contributions to these rare decay processes can saturate the corresponding experimental bound.
In the framework of Left-Right symmetric model, we investigate an interesting scenario, in which the so-called VEV seesaw problem can be naturally solved with Z_2 symmetry. In such a scenario, we find a pair of stable weakly interacting massive parti cles (WIMPs), which may be the cold dark matter candidates. However, the WIMP-nucleon cross section is 3-5 orders of magnitude above the present upper bounds from the direct dark matter detection experiments for $m sim 10^2-10^4 $ GeV. As a result, the relic number density of two stable particles has to be strongly suppressed to a very small level. Nevertheless, our analysis shows that this scenario cant provide very large annihilation cross sections so as to give the desired relic abundance except for the resonance case. Only for the case if the rotation curves of disk galaxies are explained by the Modified Newtonian Dynamics (MOND), the stable WIMPs could be as the candidates of cold dark matter.
181 - M.J.Luo , Q.Y.Liu 2008
The Type I, II and hybrid (I+II) seesaw mechanism, which explain why neutrinos are especially light, are consequences of the left-right symmetric model (LRSM). They can be classified by the ranges of parameters of LRSM. We show that a nearly cancella tion in general Type-(I+II) seesaw is more natural than other types of seesaw in the LRSM if we consider their stability against radiative correction. In this scenario the small neutrino masses are due to the structure cancellation, and the masses of the right handed neutrino can be of order of O(10)TeV. The realistic model for non-zero neutrino masses, charged lepton masses and lepton tribimaximal mixing can be implemented by embedding $A_4$ flavor symmetry in the model with perturbations to the textures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا