ترغب بنشر مسار تعليمي؟ اضغط هنا

Extension of vertex cover and independent set in some classes of graphs and generalizations

201   0   0.0 ( 0 )
 نشر من قبل Mehdi Khosravian Ghadikolaei
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider extension variants of the classical graph problems Vertex Cover and Independent Set. Given a graph $G=(V,E)$ and a vertex set $U subseteq V$, it is asked if there exists a minimal vertex cover (resp. maximal independent set) $S$ with $Usubseteq S$ (resp. $U supseteq S$). Possibly contradicting intuition, these problems tend to be NP-hard, even in graph classes where the classical problem can be solved in polynomial time. Yet, we exhibit some graph classes where the extension variant remains polynomial-time solvable. We also study the parameterized complexity of these problems, with parameter $|U|$, as well as the optimality of simple exact algorithms under the Exponential-Time Hypothesis. All these complexity considerations are also carried out in very restricted scenarios, be it degree or topological restrictions (bipartite, planar or chordal graphs). This also motivates presenting some explicit branching algorithms for degree-bounded instances. We further discuss the price of extension, measuring the distance of $U$ to the closest set that can be extended, which results in natural optimization problems related to extension problems for which we discuss polynomial-time approximability.



قيم البحث

اقرأ أيضاً

Let $G$ be a graph on $n$ vertices and $mathrm{STAB}_k(G)$ be the convex hull of characteristic vectors of its independent sets of size at most $k$. We study extension complexity of $mathrm{STAB}_k(G)$ with respect to a fixed parameter $k$ (analogous ly to, e.g., parameterized computational complexity of problems). We show that for graphs $G$ from a class of bounded expansion it holds that $mathrm{xc}(mathrm{STAB}_k(G))leqslant mathcal{O}(f(k)cdot n)$ where the function $f$ depends only on the class. This result can be extended in a simple way to a wide range of similarly defined graph polytopes. In case of general graphs we show that there is {em no function $f$} such that, for all values of the parameter $k$ and for all graphs on $n$ vertices, the extension complexity of $mathrm{STAB}_k(G)$ is at most $f(k)cdot n^{mathcal{O}(1)}.$ While such results are not surprising since it is known that optimizing over $mathrm{STAB}_k(G)$ is $FPT$ for graphs of bounded expansion and $W[1]$-hard in general, they are also not trivial and in both cases stronger than the corresponding computational complexity results.
In this paper, we consider the Target Set Selection problem: given a graph and a threshold value $thr(v)$ for any vertex $v$ of the graph, find a minimum size vertex-subset to activate s.t. all the vertices of the graph are activated at the end of th e propagation process. A vertex $v$ is activated during the propagation process if at least $thr(v)$ of its neighbors are activated. This problem models several practical issues like faults in distributed networks or word-to-mouth recommendations in social networks. We show that for any functions $f$ and $rho$ this problem cannot be approximated within a factor of $rho(k)$ in $f(k) cdot n^{O(1)}$ time, unless FPT = W[P], even for restricted thresholds (namely constant and majority thresholds). We also study the cardinality constraint maximization and minimizati
We study the generalized min sum set cover (GMSSC) problem, wherein given a collection of hyperedges $E$ with arbitrary covering requirements $k_e$, the goal is to find an ordering of the vertices to minimize the total cover time of the hyperedges; a hyperedge $e$ is considered covered by the first time when $k_e$ many of its vertices appear in the ordering. We give a $4.642$ approximation algorithm for GMSSC, coming close to the best possible bound of $4$, already for the classical special case (with all $k_e=1$) of min sum set cover (MSSC) studied by Feige, Lov{a}sz and Tetali, and improving upon the previous best known bound of $12.4$ due to Im, Sviridenko and van der Zwaan. Our algorithm is based on transforming the LP solution by a suitable kernel and applying randomized rounding. This also gives an LP-based $4$ approximation for MSSC. As part of the analysis of our algorithm, we also derive an inequality on the lower tail of a sum of independent Bernoulli random variables, which might be of independent interest and broader utility. Another well-known special case is the min sum vertex cover (MSVC) problem, in which the input hypergraph is a graph and $k_e = 1$, for every edge. We give a $16/9$ approximation for MSVC, and show a matching integrality gap for the natural LP relaxation. This improves upon the previous best $1.999946$ approximation of Barenholz, Feige and Peleg. (The claimed $1.79$ approximation result of Iwata, Tetali and Tripathi for the MSVC turned out have an unfortunate, seemingly unfixable, mistake in it.) Finally, we revisit MSSC and consider the $ell_p$ norm of cover-time of the hyperedges. Using a dual fitting argument, we show that the natural greedy algorithm achieves tight, up to NP-hardness, approximation guarantees of $(p+1)^{1+1/p}$, for all $pge 1$. For $p=1$, this gives yet another proof of the $4$ approximation for MSSC.
There are several centrality measures that have been introduced and studied for real world networks. They account for the different vertex characteristics that permit them to be ranked in order of importance in the network. Betweenness centrality is a measure of the influence of a vertex over the flow of information between every pair of vertices under the assumption that information primarily flows over the shortest path between them. In this paper we present betweenness centrality of some important classes of graphs.
For a given class $mathcal{C}$ of graphs and given integers $m leq n$, let $f_mathcal{C}(n,m)$ be the minimal number $k$ such that every $k$ independent $n$-sets in any graph belonging to $mathcal{C}$ have a (possibly partial) rainbow independent $m$ -set. Motivated by known results on the finiteness and actual value of $f_mathcal{C}(n,m)$ when $mathcal{C}$ is the class of line graphs of graphs, we study this function for various other classes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا