ﻻ يوجد ملخص باللغة العربية
A classic result due to Furstenberg is the strict ergodicity of the horocycle flow for a compact hyperbolic surface. Strict ergodicity is unique ergodicity with respect to a measure of full support, and therefore implies minimality. The horocycle flow has been previously studied on minimal foliations by hyperbolic surfaces on closed manifolds, where it is known not to be minimal in general. In this paper, we prove that for the special case of Riemannian foliations, strict ergodicity of the horocycle flow still holds. This in particular proves that this flow is minimal, which establishes a conjecture proposed by Matsumoto. The main tool is a theorem due to Coud`ene, which he presented as an alternative proof for the surface case. It applies to two continuous flows defining a measure-preserving action of the affine group of the line on a compact metric space, precisely matching the foliated setting. In addition, we briefly discuss the application of Coud`enes theorem to other kinds of foliations.
We show that the horocycle flow associated with a foliation on a compact manifold by hyperbolic surfaces is minimal under certain conditions.
In this paper we compute all the smooth solutions to the Hamilton-Jacobi equation associated with the horocycle flow. This can be seen as the Euler-Lagrange flow (restricted to the energy level set $E^{-1}(frac 12)$) defined by the Tonelli Lagrangian
Inspired by the works of Zagier, we study the probability measures $ u(t)$ with support on the flat tori which are the compact orbits of the maximal unipotent subgroup acting holomorphically on the positive orthonormal frame bundle $mathcal{F}({M}_D)
We study the existence of transitive exchange maps with flips defined on the unit circle. We provide a complete answer to the question of whether there exists a transitive exchange map of the unit circle defined on n subintervals and having f flips.
We prove that the distribution of eigenvectors of generalized Wigner matrices is universal both in the bulk and at the edge. This includes a probabilistic version of local quantum unique ergodicity and asymptotic normality of the eigenvector entries.