ﻻ يوجد ملخص باللغة العربية
Observations have shown that UV/optical variation amplitude of quasars depend on several physi- cal parameters including luminosity, Eddington ratio, and likely also black hole mass. Identifying new factors which correlate with the variation is essential to probe the underlying physical processes. Combining ~ten years long quasar light curves from SDSS stripe 82 and X-ray data from Stripe 82X, we build a sample of X-ray detected quasars to investigate the relation between UV/optical variation amplitude ($sigma_{rms}$) and X-ray loudness. We find that quasars with more intense X-ray radiation (com- pared to bolometric luminosity) are more variable in UV/optical. Such correlation remains highly significant after excluding the effect of other parameters including luminosity, black hole mass, Ed- dington ratio, redshift, rest-frame wavelength (i.e., through partial correlation analyses). We further find the intrinsic link between X-ray loudness and UV/optical variation is gradually more prominent on longer timescales (up to 10 years in the observed frame), but tends to disappear at timescales < 100 days. This suggests a slow and long-term underlying physical process. The X-ray reprocessing paradigm, in which UV/optical variation is produced by a variable central X-ray emission illuminating the accretion disk, is thus disfavored. The discovery points to an interesting scheme that both the X-ray corona heating and UV/optical variation is quasars are closely associated with magnetic disc turbulence, and the innermost disc turbulence (where corona heating occurs) correlates with the slow turbulence at larger radii (where UV/optical emission is produced).
Characterisation of the long-term variations in the broad line region in a luminous blazar, where Comptonisation of broad-line emission within a relativistic jet is the standard scenario for production of gamma-ray emission that dominates the spectra
A strong outburst in the X-ray continuum and a change of its Seyfert spectral type was detected in HE 1136-2304 in 2014. The spectral type changed from nearly Seyfert 2 type (1.95) to Seyfert 1.5 type in comparison to previous observations taken ten
Although timing variations in close binary systems have been studied for a long time, their underlying causes are still unclear. A possible explanation is the so-called Applegate mechanism, where a strong, variable magnetic field can periodically cha
We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z=0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z<1.3. However, their rest-frame 2 keV luminosi
We present combined $approx 14-37~rm ks$ Chandra observations of seven $z = 1.6-2.7$ broad absorption line (BAL) quasars selected from the Large Bright Quasar Survey (LBQS). These seven objects are high-ionization BAL (HiBAL) quasars, and they were u