ترغب بنشر مسار تعليمي؟ اضغط هنا

VME Readout at and Below the Conversion Time Limit

133   0   0.0 ( 0 )
 نشر من قبل Michael Munch
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The achievable acquisition rates of modern triggered nuclear physics experiments are heavily dependent on the readout software, in addition to the limits given by the utilized hardware. This paper presents an asynchronous readout scheme that significantly improves the livetime of an otherwise synchronous triggered VME-based data acquisition system. A detailed performance analysis of this and other readout schemes, in terms of the basic data transfer operations, is described. The performance of the newly developed scheme as well as synchronous schemes on two systems has been measured. The measurements show excellent agreement with the detailed description. For the second system, which previously used a synchronous readout, the deadtime ratio is at a 20 kHz trigger request frequency reduced by 30 % compared to the nearest contender, allowing 10 % more events to be recorded in the same time. The interaction between the network and readout tasks for single-core processors is also investigated. A livetime ratio loss of a few percent can be observed, depending on the size of the data chunks given to the operating system kernel for network transfer. With appropriately chosen chunk size, the effect can be mitigated.



قيم البحث

اقرأ أيضاً

The Fast Tracker (FTK) is an ATLAS trigger upgrade built for full event, low-latency, high-rate tracking. The FTK core, made of 9U VME boards, performs the most demanding computational task. The Associative Memory Board Serial Link Processor (AMB) an d the Auxiliary card (AUX), plugged on the front and back sides of the same VME slot, constitute the Processing Unit (PU), which finds tracks using hits from 8 layers of the inner detector. The PU works in pipeline with the Second Stage Board (SSB), which finds 12-layer tracks by adding extra hits to the identified tracks. In the designed configuration, 16 PUs and 4 SSBs are installed in a VME crate. The high power-consumption of the AMB, AUX and SSB (respectively of about 250 W, 70 W and 160 W per board) required the development of a custom cooling system. Even though the expected power consumption for each VME crate of the FTK system is high compared to a common VME setup, the 8 FTK core crates will use $approx$ 60 kW, which is just a fraction of the power and the space needed for a CPU farm performing the same task. We report on the integration of 32 PUs and 8 SSBs inside the FTK system, on the infrastructures needed to run and cool them, and on the tests performed to verify the system processing rate and the temperature stability at a safe value.
The GOSIP (Gigabit Optical Serial Interface Protocol) provides communication via optical fibres between multiple kinds of front-end electronics and the KINPEX PCIe receiver board located in the readout host PC. In recent years a stack of device dri ver software has been developed to utilize this hardware for several scenarios of data acquisition. On top of this driver foundation, several graphical user interfaces (GUIs) have been created. These GUIs are based on the Qt graphics libraries and are designed in a modular way: All common functionalities, like generic I/O with the front-ends, handling of configuration files, and window settings, are treated by a framework class GosipGUI. In the Qt workspace of such GosipGUI frame, specific sub classes may implement additional windows dedicated to operate different GOSIP front-end modules. These readout modules developed by GSI Experiment Electronics department are for instance FEBEX sampling ADCs, TAMEX FPGA-TDCs, or POLAND QFWs. For each kind of front-end the GUIs allow to monitor specific register contents, to set up the working configuration, and to interactively change parameters like sampling thresholds during data acquisition. The latter is extremely useful when qualifying and tuning the front-ends in the electronics lab or detector cave. Moreover, some of these GosipGUI implementations have been equipped with features for mostly automatic testing of ASICs in a prototype mass production. This has been applied for the APFEL-ASIC component of the PANDA experiment currently under construction, and for the FAIR beam diagnostic readout system POLAND.
The MAJORANA Collaboration will seek neutrinoless double beta decay (0nbb) in 76Ge using isotopically enriched p-type point contact (PPC) high purity Germanium (HPGe) detectors. A tonne-scale array of HPGe detectors would require background levels be low 1 count/ROI-tonne-year in the 4 keV region of interest (ROI) around the 2039 keV Q-value of the decay. In order to demonstrate the feasibility of such an experiment, the MAJORANA DEMONSTRATOR, a 40 kg HPGe detector array, is being constructed with a background goal of <3 counts/ROI-tonne-year, which is expected to scale down to <1 count/ROI-tonne-year for a tonne-scale experiment. The signal readout electronics, which must be placed in close proximity to the detectors, present a challenge toward reaching this background goal. This talk will discuss the materials and design used to construct signal readout electronics with low enough backgrounds for the MAJORANA DEMONSTRATOR.
The MAJORANA DEMONSTRATOR is a planned 40 kg array of Germanium detectors intended to demonstrate the feasibility of constructing a tonne-scale experiment that will seek neutrinoless double beta decay ($0 ubetabeta$) in $^{76}mathrm{Ge}$. Such an exp eriment would require backgrounds of less than 1 count/tonne-year in the 4 keV region of interest around the 2039 keV Q-value of the $betabeta$ decay. Designing low-noise electronics, which must be placed in close proximity to the detectors, presents a challenge to reaching this background target. This paper will discuss the MAJORANA collaborations solutions to some of these challenges.
For the International Large Detector concept at the planned International Linear Collider, the use of time projection chambers (TPC) with micro-pattern gas detector readout as the main tracking detector is investigated. In this paper, results from a prototype TPC, placed in a 1 T solenoidal field and read out with three independent GEM-based readout modules, are reported. The TPC was exposed to a 6 GeV electron beam at the DESY II synchrotron. The efficiency for reconstructing hits, the measurement of the drift velocity, the space point resolution and the control of field inhomogeneities are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا