ﻻ يوجد ملخص باللغة العربية
We analyze numerically some macroscopic models of pedestrian motion such as Hughes model [1] and mean field game with nonlinear mobilities [2] modeling fast exit scenarios in pedestrian crowds. A model introduced by Hughes consisting of a non-linear conservation law for the density of pedestrians coupled with an Eikonal equation for a potential modeling the common sense of the task. Mean field game with nonlinear mobilities is obtained by an optimal control approach, where the motion of every pedestrian is determined by minimizing a cost functional, which depends on the position, velocity, exit time and the overall density of people. We consider a parabolic optimal control problem of nonlinear mobility in pedestrian dynamics, which leads to a mean field game structure. We show how optimal control problem related to the Hughes model for pedestrian motion. Furthermore we provide several numerical results which relate both models in one and two dimensions. References [1] Hughes R.L.: A continuum theory for the flow of pedestrians, Transportation Research Part B: Methodological, 36, 507-535 (2000) [2] Burger M., Di Francesco M., Markowich P.A., Wolfram M-T.: Mean field games with nonlinear mobilities in pedestrian dynamics, Discrete and Continuous Dynamical Systems. Series B. A Journal Bridging Mathematics and Sciences, 19, 1311-1333 (2014)
In this paper we present numerical simulations of a macroscopic vision-based model [1] derived from microscopic situation rules described in [2]. This model describes an approach to collision avoidance between pedestrians by taking decisions of turni
We critically discuss the concept of ``synchronized flow from a historical, empirical, and theoretical perspective. Problems related to the measurement of vehicle data are highlighted, and questionable interpretations are identified. Moreover, we pro
The goal of this paper is to derive rigorously macroscopic traffic flow models from microscopic models. More precisely, for the microscopic models, we consider follow-the-leader type models with different types of drivers and vehicles which are distr
The intersecting pedestrian flow on the 2D lattice with random update rule is studied. Each pedestrian has three moving directions without the back step. Under periodic boundary conditions, an intermediate phase has been found at which some pedestria
We present a method to construct reduced-order models for duct flows of Bingham media. Our method is based on proper orthogonal decomposition (POD) to find a low-dimensional approximation to the velocity and artificial neural network to approximate t