ترغب بنشر مسار تعليمي؟ اضغط هنا

Exact quantum dynamics of XXZ central spin problems

77   0   0.0 ( 0 )
 نشر من قبل Xi-Wen Guan
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We obtain analytically close forms of benchmark quantum dynamics of the collapse and revival (CR), reduced density matrix, Von Neumann entropy, and fidelity for the XXZ central spin problem. These quantities characterize the quantum decoherence and entanglement of the system with few to many bath spins, and for a short to infinitely long time evolution. For the homogeneous central spin problem, the effective magnetic field $B$, coupling constant $A$ and longitudinal interaction $Delta$ significantly influence the time scales of the quantum dynamics of the central spin and the bath, providing a tunable resource for quantum metrology. Under the resonance condition $B=Delta=A$, the location of the $m$-th revival peak in time reaches a simple relation $t_{r} simeqfrac{pi N}{A} m$ for a large $N$. For $Delta =0$, $Nto infty$ and a small polarization in the initial spin coherent state, our analytical result for the CR recovers the known expression found in the Jaynes-Cummings model, thus building up an exact dynamical connection between the central spin problems and the light-matter interacting systems in quantum nonlinear optics. In addition, the CR dynamics is robust to a moderate inhomogeneity of the coupling amplitudes, while disappearing at strong inhomogeneity.

قيم البحث

اقرأ أيضاً

We obtain exact dynamics of a two-qubit central spin model (CSM) consisting of two interacting qubits homogeneously coupled to a spin bath via the $XXZ$-type coupling, with the bath initially prepared in linear superpositions of the symmetric Dicke s tates. Using the interaction picture Hamiltonian with respect to the non-spin-flipping part of the model, we derive a sequence of equations of motion within each magnetization sector satisfied by the probability amplitudes of the time-evolved state. These equations of motion admit analytical solutions for the single-qubit CSM in which one of the two central qubits decouples from the rest of the system. Based on this, we provide a quantitative interpretation to the observed collapse-revival phenomena in the single-qubit Rabi oscillations when the bath is prepared in the spin coherent state. We then study the disentanglement and coherence dynamics of two initially entangled noninteracting qubits when the two qubits interact with individual baths or with a common bath. For individual baths the coherent dynamics is found to positively correlated to the single-qubit purity dynamics, and entanglement sudden disappearance and revivals are observed in both cases. The entanglement creation of two initially separable qubits coupled to a common bath is also studied and collapse and revival behaviors in the entanglement dynamics are observed. Choosing the equally weighted state and the $W$-class states as the bath initial states, we finally study the dynamics of entanglement between two individual bath spins and demonstrate the entanglement sharing mechanism in such a system.
The dynamical behavior of a star network of spins, wherein each of N decoupled spins interact with a central spin through non uniform Heisenberg XX interaction is exactly studied. The time-dependent Schrodinger equation of the spin system model is so lved starting from an arbitrary initial state. The resulting solution is analyzed and briefly discussed.
We investigate the Markovian and non-Markovian dynamics of Gaussian quantum channels, exploiting a recently introduced necessary and sufficient criterion and the ensuing measure of non-Markovianity based on the violation of the divisibility property of the dynamical map. We compare the paradigmatic instances of Quantum Brownian motion (QBM) and Pure Damping (PD) channels, and for the former we find that the exact dynamical evolution is always non-Markovian in the finite-time as well as in the asymptotic regimes, for any nonvanishing value of the non-Markovianity parameter. If one resorts to the rotating wave approximated (RWA) form of the QBM, that neglects the anomalous diffusion contribution to the system dynamics, we show that such approximation fails to detect the non-Markovian nature of the dynamics. Finally, for the exact dynamics of the QBM in the asymptotic regime, we show that the quantifiers of non-Markovianity based on the distinguishability between quantum states fail to detect the non-Markovian nature of the dynamics.
100 - Jiaxiu Li , Ye Cao , Ning Wu 2021
Using an equations-of-motion method based on analytical representations of spin-operator matrix elements in the XX chain, we obtain exact long-time dynamics of a composite system consisting of a spin-$S$ central spin and an XXZ chain, with the two in teracting via inhomogeneous XXZ-type hyperfine coupling. Three types of initial bath states, namely, the Neel state, the ground state, and the spin coherent state are considered. We study the reduced dynamics of both the central spin and the XXZ bath. For the Neel state, we find that strong hyperfine couplings slow down the initial decay but facilitate the long-time relaxation of the antiferromagnetic order. Moreover, for fixed hyperfine coupling a larger $S$ leads to a faster initial decay of the antiferromagnetic order. We then study the purity dynamics of an $S=1$ central spin coupled to an XXZ chain prepared in the ground state. The time-dependent purity is found to reach the highest values at the critical point. We finally study the polarization dynamics of the central spin homogeneously coupled to a bath prepared in the spin coherent state. Under the resonant condition, the polarization dynamics for $S>frac{1}{2}$ exhibits collapse-revival behaviors with fine structures. However, the collapse-revival phenomena is found to be fragile with respect to the anisotropic intrabath coupling.
In this article we revisit the theory of open quantum systems from the perspective of fermionic baths. Specifically, we concentrate on the dynamics of a central spin half particle interacting with a spin bath. We have calculated the exact reduced dyn amics of the central spin and constructed the Kraus operators in relation to that. Further, the exact Lindblad type cannonical master equation corresponding to the reduced dynamics is constructed. We have also briefly touch upon the aspect of non-Markovianity from the backdrop of the reduced dynamics of the central spin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا