ترغب بنشر مسار تعليمي؟ اضغط هنا

A Fermi Gamma-ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-Wave Candidates in Advanced LIGOs First Observing Run

96   0   0.0 ( 0 )
 نشر من قبل Eric Burns
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a search for prompt gamma-ray counterparts to compact binary coalescence gravitational wave (GW) candidates from Advanced LIGOs first observing run (O1). As demonstrated by the multimessenger observations of GW170817/GRB 170817A, electromagnetic and GW observations provide complementary information about the astrophysical source and, in the case of weaker candidates, may strengthen the case for an astrophysical origin. Here we investigate low-significance GW candidates from the O1 compact-binary coalescence searches using the Fermi Gamma-ray Burst Monitor (GBM), leveraging its all-sky and broad energy coverage. Candidates are ranked and compared to background to measure significance. Those with false alarm rates of less than 10^-5 Hz (about one per day) are used as the search sample for gamma-ray follow-up. No GW candidates were found to be coincident with gamma-ray transients independently identified by blind searches of the GBM data. In addition, GW candidate event times were followed up by a separate targeted search of GBM data. Among the resulting GBM events, the two with lowest false alarm rates were the gamma-ray transient GW150914-GBM presented in Connaughton et al. (2016) and a solar flare in chance coincidence with a GW candidate.

قيم البحث

اقرأ أيضاً

We present the results of a search for short and intermediate-duration gravitational-wave signals from four magnetar bursts in Advanced LIGOs second observing run. We find no evidence of a signal and set upper bounds on the root sum squared of the to tal dimensionless strain ($h_{text{rss}}$) from incoming intermediate-duration gravitational waves ranging from $1.1 times 10^{-22}$ at 150 Hz to $4.4 times 10^{-22}$ at 1550 Hz at 50% detection efficiency. From the known distance to the magnetar SGR 1806-20 (8.7 kpc) we can place upper bounds on the isotropic gravitational wave energy of $3.4 times 10^{44} text{erg}$ at 150 Hz assuming optimal orientation. This represents an improvement of about a factor of 10 in strain sensitivity from the previous search for such signals, conducted during initial LIGOs sixth science run. The short duration search yielded upper limits of $2.1 times 10^{44} ,text{erg}$ for short white noise bursts, and $2.3times 10^{47},text{erg}$ for $100 , text{ms}$ long ringdowns at 1500 Hz, both at 50% detection efficiency.
We present the results of targeted searches for gravitational-wave transients associated with gamma-ray bursts during the second observing run of Advanced LIGO and Advanced Virgo, which took place from 2016 November to 2017 August. We have analyzed 9 8 gamma-ray bursts using an unmodeled search method that searches for generic transient gravitational waves and 42 with a modeled search method that targets compact-binary mergers as progenitors of short gamma-ray bursts. Both methods clearly detect the previously reported binary merger signal GW170817, with p-values of $<9.38 times 10^{-6}$ (modeled) and $3.1 times 10^{-4}$ (unmodeled). We do not find any significant evidence for gravitational-wave signals associated with the other gamma-ray bursts analyzed, and therefore we report lower bounds on the distance to each of these, assuming various source types and signal morphologies. Using our final modeled search results, short gamma-ray burst observations, and assuming binary neutron star progenitors, we place bounds on the rate of short gamma-ray bursts as a function of redshift for $z leq 1$. We estimate 0.07-1.80 joint detections with Fermi-GBM per year for the 2019-20 LIGO-Virgo observing run and 0.15-3.90 per year when current gravitational-wave detectors are operating at their design sensitivities.
Progenitor scenarios for short gamma-ray bursts (short GRBs) include coalescenses of two neutron stars or a neutron star and black hole, which would necessarily be accompanied by the emission of strong gravitational waves. We present a search for the se known gravitational-wave signatures in temporal and directional coincidence with 22 GRBs that had sufficient gravitational-wave data available in multiple instruments during LIGOs fifth science run, S5, and Virgos first science run, VSR1. We find no statistically significant gravitational-wave candidates within a [-5, +1) s window around the trigger time of any GRB. Using the Wilcoxon-Mann-Whitney U test, we find no evidence for an excess of weak gravitational-wave signals in our sample of GRBs. We exclude neutron star-black hole progenitors to a median 90% CL exclusion distance of 6.7 Mpc.
We present the first Advanced LIGO and Advanced Virgo search for ultracompact binary systems with component masses between 0.2 $M_odot$ - 1.0 $M_odot$ using data taken between September 12, 2015 and January 19, 2016. We find no viable gravitational w ave candidates. Our null result constrains the coalescence rate of monochromatic (delta function) distributions of non-spinning (0.2 $M_odot$, 0.2 $M_odot$) ultracompact binaries to be less than $1.0 times 10^6 text{Gpc}^{-3} text{yr}^{-1}$ and the coalescence rate of a similar distribution of (1.0 $M_odot$, 1.0 $M_odot$) ultracompact binaries to be less than $1.9 times 10^4 text{Gpc}^{-3} text{yr}^{-1}$ (at 90 percent confidence). Neither black holes nor neutron stars are expected to form below ~ 1 solar mass through conventional stellar evolution, though it has been proposed that similarly low mass black holes could be formed primordially through density fluctuations in the early universe. Under a particular primordial black hole binary formation scenario, we constrain monochromatic primordial black hole populations of 0.2 $M_odot$ to be less than $33%$ of the total dark matter density and monochromatic populations of 1.0 $M_odot$ to be less than $5%$ of the dark matter density. The latter strengthens the presently placed bounds from micro-lensing surveys of MAssive Compact Halo Objects (MACHOs) provided by the MACHO and EROS collaborations.
A wide variety of astrophysical and cosmological sources are expected to contribute to a stochastic gravitational-wave background. Following the observations of GW150914 and GW151226, the rate and mass of coalescing binary black holes appear to be gr eater than many previous expectations. As a result, the stochastic background from unresolved compact binary coalescences is expected to be particularly loud. We perform a search for the isotropic stochastic gravitational-wave background using data from Advanced LIGOs first observing run. The data display no evidence of a stochastic gravitational-wave signal. We constrain the dimensionless energy density of gravitational waves to be $Omega_0<1.7times 10^{-7}$ with 95% confidence, assuming a flat energy density spectrum in the most sensitive part of the LIGO band (20-86 Hz). This is a factor of ~33 times more sensitive than previous measurements. We also constrain arbitrary power-law spectra. Finally, we investigate the implications of this search for the background of binary black holes using an astrophysical model for the background.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا