ﻻ يوجد ملخص باللغة العربية
The electronic phase separation (EPS) of optimally doped La2/3Ca1/3MnO3 (LCMO) thin films under various degrees of anisotropic strain is investigated by static magnetotransport and dynamic relaxation measurements. Three LCMO films were grown simultaneously on (001) NdGaO3 (NGO) substrates by pulsed laser deposition, and then post-growth annealed at 780 oC in O2 for different durations of time. With increasing annealing time, the films developed significant strains of opposite signs along the two orthogonal in-plane directions. The static temperature-dependent resistivity, R(T), was measured simultaneously along the two orthogonal directions. With increasing annealing time, both zero-field-cooled and field-cooled R(T) show significant increases, suggesting strain-triggered EPS and appearance of antiferromagnetic insulating (AFI) phases in a ferromagnetic metallic (FMM) ground state. Meanwhile, R(T) along the tensile-strained [010] direction becomes progressively larger than that along the compressive-strained [100]. The enhanced resistivity anisotropy indicates that the EPS is characterized by phase-separated FMM entities with a preferred orientation along [100], possibly due to the cooperative deformation and rotation/tilting of the MnO6 octahedra under the enhanced anisotropic strain. The anisotropic EPS can also be tuned by an external magnetic field. During a field-cycle at several fixed temperatures, the AFI phases are melted at high fields and recovered at low fields, resulting in sharp resistance changes of the ratio as high as 104. Furthermore, the resistivity was found to exhibit glass-like behavior, relaxing logarithmically in the phase-separated states. Fitting the data to a phenomenological model, the resulting resistive viscosity and characteristic relaxation time are found to evolve with temperature, showing a close correlation with the static measurements in the EPS states.
Giant Random Telegraph Noise (RTN) in the resistance fluctuation of a macroscopic film of perovskite-type manganese oxide La2/3Ca1/3MnO3 has been observed at various temperatures ranging from 4K to 170K, well below the Curie temperature (TC = 210K).
A Mn valence instability on La2/3Ca1/3MnO3 thin films, grown on LaAlO3 (001)substrates is observed by x-ray absorption spectroscopy at the Mn L-edge and O K-edge. As-grown samples, in situ annealed at 800 C in oxygen, exhibit a Curie temperature well
Low frequency electrical noise measurements have been used to probe the electronic state of the perovskite-type manganese oxide Pr2/3Ca1/3MnO3 versus temperature and in the vicinity of the field-induced transition from the insulating, charge-ordered
The existence of coherent magnetic correlations in the normal phase of cuprate high-temperature superconductors has proven difficult to measure directly. Here we report on a study of ferromagnetic-superconductor bilayers of La2/3Ca1/3MnO3/YBa2Cu3O7 (
Understanding and manipulating properties emerging at a surface or an interface require a thorough knowledge of structure-property relationships. We report a study of a prototype oxide system, La2/3Sr1/3MnO3 grown on SrTiO3(001), by combining in-situ