ترغب بنشر مسار تعليمي؟ اضغط هنا

Unusual Effects of Be doping in the Iron Based Superconductor FeSe

176   0   0.0 ( 0 )
 نشر من قبل G. R. Stewart
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent superconducting transition temperatures (Tc) over 100 K for monolayer FeSe on SrTiO3 have renewed interest in the bulk parent compound. In KCl:AlCl3 flux-transport-grown crystals of FeSe0.94Be0.06, FeSe0.97Be0.03 and, for comparison, FeSe, this work reports doping of FeSe using Be, among the smallest of possible dopants, corresponding to an effective chemical pressure. According to lattice parameter measurements, 6% Be doping shrank the tetragonal FeSe lattice equivalent to a physical pressure of 0.75 GPa. Using this flux-transport method of sample preparation, 6% of Be was the maximum amount of dopant achievable. At this maximal composition of FeSe0.94Be0.06, the lattice unit cell shrinks by 2.4%, Tc - measured in the bulk via specific heat - increases by almost 10%, the Tc vs pressure behavior shifts its peak Tconset downwards by ~1 GPa, the high temperature structural transition around TS = 89 K increases by 1.9 K (in contrast to other dopants in FeSe which uniformly depress TS), and the low temperature specific heat gamma increases by 10 % compared to pure FeSe. Also, upon doping by 6% Be the residual resistivity ratio, rho(300K)/rho(T->0), increases by almost a factor of four, while rho(300K)/rho(T=Tc+) increases by 50%.



قيم البحث

اقرأ أيضاً

Electronic correlations were long suggested not only to be responsible for the complexity of many novel materials, but also to form essential prerequisites for their intriguing properties. Electronic behavior of iron-based superconductors is far from conventional, while the reason for that is not yet understood. Here we present a combined study of the electronic spectrum in the iron-based superconductor FeSe by means of angle-resolved photoemission spectroscopy (ARPES) and dynamical mean field theory (DMFT). Both methods in unison reveal strong deviations of the spectrum from single-electron approximation for the whole 3$d$ band of iron: not only the well separated coherent and incoherent parts of the spectral weight are observed, but also a noticeable dispersion of the lower Hubbard band (LHB) is clearly present. This way we demonstrate correlations of the most puzzling intermediate coupling strength in iron superconductors.
We have investigated the effect of atomic substitutions in the FeSe system, which exhibits the simplest crystal structure among the iron-based superconductors. An enhancement of the superconducting transition temperature Tc was observed with the subs titution of S or Te for Se; the Tc increased with S substitution by up to 20 %, and also increased with Te substitution up to 75 %. In contrast, Co or Ni substitutions for the Fe site significantly suppressed superconductivity. In this work we present a detailed description of the substitution technique employed to determine Tc in the FeSe system.
The thermal conductivity of the iron-based superconductor FeSe was measured at temperatures down to 50 mK in magnetic fields up to 17 T. In zero magnetic field, the electronic residual linear term in the T = 0 limit, kappa_0/T, is vanishingly small. Application of a magnetic field H causes no increase in kappa_0/T initially. Those two observations show that there are no zero-energy quasiparticles that carry heat and therefore no nodes in the superconducting gap of FeSe. The full field dependence of kappa_0/T has the classic shape of a two-band superconductor, such as MgB2: it rises exponentially at very low field, with a characteristic field H* << Hc2, and then more slowly up to the upper critical field Hc2. This shows that the superconducting gap is very small on one of the pockets in the Fermi surface of FeSe.
High-quality K(Fe$_{1-x}$Co$_x$)$_2$As$_2$ single crystals have been grown by using KAs flux method. Instead of increasing the superconducting transition temperature $T_{rm c}$ through electron doping, we find that Co impurities rapidly suppress $T_{ rm c}$ down to zero at only $x approx$ 0.04. Such an effective suppression of $T_{rm c}$ by impurities is quite different from that observed in Ba$_{0.5}$K$_{0.5}$Fe$_2$As$_2$ with multiple nodeless superconducting gaps. Thermal conductivity measurements in zero field show that the residual linear term $kappa_0/T$ only change slightly with $3.4%$ Co doping, despite the sharp increase of scattering rate. The implications of these anomalous impurity effects are discussed.
We study hydrogen doping effects in an iron-based superconductor LaFeAsO_(1-y) by using the first-principles calculation and explore the reason why the superconducting transition temperature is remarkably enhanced by the hydrogen doping. The present calculations reveal that a hydrogen cation stably locating close to an iron atom attracts a negatively-charged FeAs layer and results in structural distortion favorable for further high temperature transition. In fact, the lattice constant a averaged over the employed supercell shrinks and then the averaged As-Fe-As angle approaches 109.74 degrees with increasing the hydrogen doping amount. Moreover, the calculations clarify electron doping effects of the solute hydrogen and resultant Fermi-level shift. These insights are useful for design of high transition-temperature iron-based superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا