ﻻ يوجد ملخص باللغة العربية
In this work, a novel artificial viscosity method is proposed using smooth and compactly supported viscosities. These are derived by revisiting the widely used piecewise constant artificial viscosity method of Persson and Peraire as well as the piecewise linear refinement of Klockner et al. with respect to the fundamental design criteria of conservation and entropy stability. Further investigating the method of modal filtering in the process, it is demonstrated that this strategy has inherent shortcomings, which are related to problems of Legendre viscosities to handle shocks near element boundaries. This problem is overcome by introducing certain functions from the fields of robust reprojection and mollififers as viscosity distributions. To the best of our knowledge, this is proposed for the first time in this work. The resulting $C_0^infty$ artificial viscosity method is demonstrated to provide sharper profiles, steeper gradients and a higher resolution of small-scale features while still maintaining stability of the method.
We build a multi-element variant of the smoothness increasing accuracy conserving (SIAC) shock capturing technique proposed for single element spectral methods by Wissink et al. (B.W. Wissink, G.B. Jacobs, J.K. Ryan, W.S. Don, and E.T.A. van der Weid
We present the recent development of hybridizable and embedded discontinuous Galerkin (DG) methods for wave propagation problems in fluids, solids, and electromagnetism. In each of these areas, we describe the methods, discuss their main features, di
We prove that the most common filtering procedure for nodal discontinuous Galerkin (DG) methods is stable. The proof exploits that the DG approximation is constructed from polynomial basis functions and that integrals are approximated with high-order
In this article, several discontinuous Petrov-Galerkin (DPG) methods with perfectly matched layers (PMLs) are derived along with their quasi-optimal graph test norms. Ultimately, two different complex coordinate stretching strategies are considered i
In this paper, we present a unified analysis of the superconvergence property for a large class of mixed discontinuous Galerkin methods. This analysis applies to both the Poisson equation and linear elasticity problems with symmetric stress formulati