ﻻ يوجد ملخص باللغة العربية
Short-circuit evaluation denotes the semantics of propositional connectives in which the second argument is evaluated only if the first argument does not suffice to determine the value of the expression. Short-circuit evaluation is widely used in programming, with sequential conjunction and disjunction as primitive connectives. We study the question which logical laws axiomatize short-circuit evaluation under the following assumptions: compound statements are evaluated from left to right, each atom (propositional variable) evaluates to either true or false, and atomic evaluations can cause a side effect. The answer to this question depends on the kind of atomic side effects that can occur and leads to different short-circuit logics. The basic case is FSCL (free short-circuit logic), which characterizes the setting in which each atomic evaluation can cause a side effect. We recall some main results and then relate FSCL to MSCL (memorizing short-circuit logic), where in the evaluation of a compound statement, the first evaluation result of each atom is memorized. MSCL can be seen as a sequential variant of propositional logic: atomic evaluations cannot cause a side effect and the sequential connectives are not commutative. Then we relate MSCL to SSCL (static short-circuit logic), the variant of propositional logic that prescribes short-circuit evaluation with commutative sequential connectives. We present evaluation trees as an intuitive semantics for short-circuit evaluation, and simple equational axiomatizations for the short-circuit logics mentioned that use negation and the sequential connectives only.
This paper explores the proof theory necessary for recommending an expressive but decidable first-order system, named MAV1, featuring a de Morgan dual pair of nominal quantifiers. These nominal quantifiers called `new and `wen are distinct from the s
Linear logical frameworks with subexponentials have been used for the specification of among other systems, proof systems, concurrent programming languages and linear authorization logics. In these frameworks, subexponentials can be configured to all
We show that it is in principle possible to construct dualities between commutative and non-commutative theories in a systematic way. This construction exploits a generalization of the exact renormalization group equation (ERG). We apply this to the
We study counting propositional logic as an extension of propositional logic with counting quantifiers. We prove that the complexity of the underlying decision problem perfectly matches the appropriate level of Wagners counting hierarchy, but also th
We prove that the category of left-handed strongly distributive skew lattices with zero and proper homomorphisms is dually equivalent to a category of sheaves over local Priestley spaces. Our result thus provides a non-commutative version of classica