ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on blue straggler formation mechanisms in Galactic globular clusters from proper motion velocity distributions

108   0   0.0 ( 0 )
 نشر من قبل Nathan Leigh W
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For a sample of 38 Galactic globular clusters (GCs), we confront the observed distributions of blue straggler (BS) proper motions and masses (derived from isochrone fitting) from the BS catalog of Simunovic & Puzia with theoretical predictions for each of the two main competing BS formation mechanisms. These are mass transfer from an evolved donor on to a main-sequence (MS) star in a close binary system, and direct collisions involving MS stars during binary encounters. We use the texttt{FEWBODY} code to perform simulations of single-binary and binary-binary interactions. This provides collisional velocity and mass distributions for comparison to the observed distributions. Most clusters are consistent with BSs derived from a dynamically relaxed population, supportive of the binary mass-transfer scenario. In a few clusters, including all the post-core collapse clusters in our sample, the collisional velocities provide the best fit.

قيم البحث

اقرأ أيضاً

163 - Howard E. Bond 2020
Four planetary nebulae (PNe) are considered to be probable or possible members of Galactic globular clusters (GCs). These are Ps 1 = K648 in M15, GJJC 1 = IRAS 18333-2357 in M22, JaFu 1 in Palomar 6, and JaFu 2 in NGC 6441. In addition to lying close to the host GCs on the sky, these PNe have radial velocities that are consistent, within the errors and stellar velocity dispersions, with cluster membership. The remaining membership criterion is whether the proper motions (PMs) of the central stars are in agreement with those of the host clusters. We have carried out the PM test for all four PNe. Two of the central stars--those of Ps 1 and GJJC 1--have PMs listed in the recent Gaia Data Release 2 (DR2). We updated the PM of the Ps 1 central star to a more precise value using archival Hubble Space Telescope (HST) frames. Both PMs are statistically consistent with cluster membership. For the other two PNe, we used archival HST images to derive the PMs of their nuclei. For JaFu 2, there are HST images at several epochs, and the measured PM of the nucleus is in excellent agreement with that of the host cluster. For JaFu 1 the available archival HST images are less optimal and the results are less conclusive; the measured PM for the central star is marginally consistent with cluster membership, but additional astrometric observations are desirable for a more robust membership test.
97 - Vikrant Jadhav 2021
Blue straggler stars (BSSs) are the most massive stars in a cluster formed via binary or higher-order stellar interactions. Though the exact nature of such formation scenarios is difficult to pin down, we provide observational constraints on the diff erent possible mechanism. In this quest, we first produce a catalogue of BSSs using Gaia DR2 data. Among the 670 clusters older than 300 Myr, we identified 868 BSSs in 228 clusters and 500 BSS candidates in 208 clusters. In general, all clusters older than 1 Gyr and massive than 1000 Msun have BSSs. The average number of BSSs increases with cluster age and mass, and there is a power-law relation between the cluster mass and the maximum number of BSSs in the cluster. We introduce the term fractional mass excess (Me) for BSSs. We find that at least 54% of BSSs have Me $<$ 0.5 (likely to have gained mass through a binary mass transfer (MT)), 30% in the $1.0 <$ Me $< 0.5$ range (likely to have gained mass through a merger) and up to 16% with Me $>$ 1.0 (likely from multiple mergers/MT). We also find that the percentage of low Me BSSs increases with age, beyond 1--2 Gyr, suggesting an increase in formation through MT in older clusters. The BSSs are radially segregated, and the extent of segregation depends on the dynamical relaxation of the cluster. The statistics and trends presented here are expected to constrain the BSS formation models in open clusters.
Recent HST observations of a large sample of globular clusters reveal that every cluster contains between 40 and 400 blue stragglers. The population does not correlate with either stellar collision rate (as would be expected if all blue stragglers we re formed via collisions) or total mass (as would be expected if all blue stragglers were formed via the unhindered evolution of a subset of the stellar population). In this paper, we support the idea that blue stragglers are made through both channels. The number produced via collisions tends to increase with cluster mass. In this paper we show how the current population produced from primordial binaries decreases with increasing cluster mass; exchange encounters with third, single, stars in the most massive clusters tend to reduce the fraction of binaries containing a primary close to the current turn-off mass. Rather their primaries tend to be somewhat more massive (~1-3 M_sun) and have evolved off the main sequence, filling their Roche lobes in the past, often converting their secondaries into blue stragglers (but more than 1 Gyr or so ago and thus they are no longer visible as blue stragglers). We show that this decline in the primordial blue straggler population is likely to be offset by the increase in the number of blue stragglers produced via collisions. The predicted total blue straggler population is therefore relatively independent of cluster mass, thus matching the observed population. This result does not depend on any particular assumed blue straggler lifetime.
We constructed a Hubble Space Telescope (HST) astro-photometric catalog of the central region of the Galactic globular cluster NGC 1261. This catalog, complemented with Gaia DR2 data sampling the external regions, has been used to estimate the struct ural parameters of the system (i.e., core, half-mass, tidal radii and concentration) from its resolved star density profile. We computed high-precision proper motions thanks to multi-epoch HST data and derived the cluster velocity dispersion profile in the plane of the sky for the innermost region, finding that the system is isotropic. The combination with line-of-sight information collected from spectroscopy in the external regions provided us with the cluster velocity dispersion profile along the entire radial extension. We also measured the absolute proper motion of NGC 1261 using a few background galaxies as a reference. The radial distribution of the Blue Straggler Star population shows that the cluster is in a low/intermediate phase of dynamical evolution.
Proper motions (PMs) are crucial to fully understand the internal dynamics of globular clusters (GCs). To that end, the Hubble Space Telescope (HST) Proper Motion (HSTPROMO) collaboration has constructed large, high-quality PM catalogues for 22 Galac tic GCs. We highlight some of our exciting recent results: the first directly-measured radial anisotropy profiles for a large sample of GCs; the first dynamical distance and mass-to-light (M/L) ratio estimates for a large sample of GCs; and the first dynamically-determined masses for hundreds of blue-straggler stars (BSSs) across a large GC sample.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا