ﻻ يوجد ملخص باللغة العربية
Multiple sclerosis is a neurological disorder in which the myelin sheaths of axons are damaged by the immune response. We report here a three-dimensional structural analysis of brain and spinal cord tissues of a mouse model of multiple sclerosis, known as experimental autoimmune encephalomyelitis (EAE). EAE-induced mice were raised with or without administration of fingolimod, which is used in the treatment of multiple sclerosis. Brains and spinal cords dissected from the EAE mice were lyophilized so as to reconstitute the intrinsic contrast of tissue elements, such as axons, in X-ray images. Three-dimensional structures of the brain hemispheres and spinal cords of the EAE mice were visualized with synchrotron radiation microtomography. Microtomographic cross sections reconstructed from the X-ray images revealed dilation of capillary vessels and vacuolation in the spinal cord of the EAE mice. Vacuolation was also observed in the cerebellum, suggesting that the neuroinflammatory response progressed in the brain. The vessel networks and vacuolation lesions in the spinal cords were modelled by automatically tracing the three-dimensional image in order to analyze the tissue structures quantitatively. The results of the analysis indicated that the distribution of vacuolations was not uniform but three-dimensionally localized. The mean vessel diameter showed a linear correlation with the clinical score, indicating that vasodilation is relevant to paralysis severity in the disease model. We suggest that vasodilation and vacuolation are related with neurological symptoms of multiple sclerosis.
Neurons transmit active potentials through axons, which are essential for the brain to function. In this study, the axonal networks of the murine brain were visualized with X-ray tomographic microscopy, also known as X-ray microtomography or micro-CT
The hearts, kidneys, livers, spleens and brains of ${}^57$Fe enriched wild-type and heterozygous $beta$-thalassaemic mice at 1, 3, 6 and 9 months of age were studied by means of Mossbauer Spectroscopy at 80K. Ferritin-like iron depositions in the hea
The spinal cord is frequently affected by atrophy and/or lesions in multiple sclerosis (MS) patients. Segmentation of the spinal cord and lesions from MRI data provides measures of damage, which are key criteria for the diagnosis, prognosis, and long
The spatial resolution achieved by recent synchrotron radiation microtomographs should be estimated from the modulation transfer function (MTF) on the micrometer scale. Step response functions of a synchrotron radiation microtomograph were determined
Multiple Sclerosis (MS) is a chronic, inflammatory and degenerative neurological disease, which is monitored by a specialist using the Expanded Disability Status Scale (EDSS) and recorded in unstructured text in the form of a neurology consult note.