ﻻ يوجد ملخص باللغة العربية
A recent experiment in the Rydberg atom chain observed unusual oscillatory quench dynamics with a charge density wave initial state, and theoretical works identified a set of many-body scar states showing nonthermal behavior in the Hamiltonian as potentially responsible for the atypical dynamics. In the same nonintegrable Hamiltonian, we discover several eigenstates at emph{infinite temperature} that can be represented exactly as matrix product states with finite bond dimension, for both periodic boundary conditions (two exact $E = 0$ states) and open boundary conditions (two $E = 0$ states and one each $E = pm sqrt{2}$). This discovery explicitly demonstrates violation of strong eigenstate thermalization hypothesis in this model and uncovers exact quantum many-body scar states. These states show signatures of translational symmetry breaking with period-2 bond-centered pattern, despite being in one dimension at infinite temperature. We show that the nearby many-body scar states can be well approximated as quasiparticle excitations on top of our exact $E = 0$ scar states, and propose a quasiparticle explanation of the strong oscillations observed in experiments.
We find exponentially many exact quantum many-body scar states in a two-dimensional PXP model -- an effective model for a two-dimensional Rydberg atom array in the nearest-neighbor blockade regime. Such scar states are remarkably simple valence bond
Quantum many-body scar states are exceptional finite energy density eigenstates in an otherwise thermalizing system that do not satisfy the eigenstate thermalization hypothesis. We investigate the fate of exact many-body scar states under perturbatio
Rydberg atoms in optical tweezer arrays provide a playground for nonequilibrium quantum many-body physics. The PXP model describes the dynamics of such systems in the strongly interacting Rydberg blockade regime and notably exhibits weakly nonergodic
We provide evidence that a clean kicked Bose-Hubbard model exhibits a many-body dynamically localized phase. This phase shows ergodicity breaking up to the largest sizes we were able to consider. We argue that this property persists in the limit of l
We construct a set of exact, highly excited eigenstates for a nonintegrable spin-1/2 model in one dimension that is relevant to experiments on Rydberg atoms in the antiblockade regime. These states provide a new solvable example of quantum many-body