ﻻ يوجد ملخص باللغة العربية
Simplistic estimation of neural connectivity in MEEG sensor space is impossible due to volume conduction. The only viable alternative is to carry out connectivity estimation in source space. Among the neuroscience community this is claimed to be impossible or misleading due to Leakage: linear mixing of the reconstructed sources. To address this problematic we propose a novel solution method that caulks the Leakage in MEEG source activity and connectivity estimates: BC-VARETA. It is based on a joint estimation of source activity and connectivity in the frequency domain representation of MEEG time series. To achieve this, we go beyond current methods that assume a fixed gaussian graphical model for source connectivity. In contrast we estimate this graphical model in a Bayesian framework by placing priors on it, which allows for highly optimized computations of the connectivity, via a new procedure based on the local quadratic approximation under quite general prior models. A further contribution of this paper is the rigorous definition of leakage via the Spatial Dispersion Measure and Earth Movers Distance based on the geodesic distances over the cortical manifold. Both measures are extended for the first time to quantify Connectivity Leakage by defining them on the cartesian product of cortical manifolds. Using these measures, we show that BC-VARETA outperforms most state of the art inverse solvers by several orders of magnitude.
This paper presents a new toolbox for MEEG source activity and connectivity estimation: Brain Connectivity Variable Resolution Tomographic Analysis version 1.0 (BC-VARETA 1.0). It relies on the third generation of nonlinear methods for the analysis o
A large body of literature has shown the substantial inter-regional functional connectivity in the mammal brain. One important property remaining un-studied is the cross-time interareal connection. This paper serves to provide a tool to characterize
Functional brain network has been widely studied to understand the relationship between brain organization and behavior. In this paper, we aim to explore the functional connectivity of brain network under a emph{multi-step} cognitive task involving w
The current-source density (CSD) analysis is a widely used method in brain electrophysiology, but this method rests on a series of assumptions, namely that the surrounding extracellular medium is resistive and uniform, and in som
Mild traumatic brain injury (mTBI) is a complex syndrome that affects up to 600 per 100,000 individuals, with a particular concentration among military personnel. About half of all mTBI patients experience a diverse array of chronic symptoms which pe