ترغب بنشر مسار تعليمي؟ اضغط هنا

Superoscillatory PT-symmetric potentials

108   0   0.0 ( 0 )
 نشر من قبل Yaniv Eliezer
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce the one-dimensional PT-symmetric Schrodinger equation, with complex potentials in the form of the canonical superoscillatory and suboscillatory functions known in quantum mechanics and optics. While the suboscillatory-like potential always generates an entirely real eigenvalue spectrum, its counterpart based on the superoscillatory wave function gives rise to an intricate pattern of PT-symmetry-breaking transitions, controlled by the parameters of the superoscillatory function. One scenario of the transitions proceeds smoothly via a set of threshold values, while another one exhibits a sudden jump to the broken PT symmetry. Another noteworthy finding is the possibility of restoration of the PT symmetry, following its original loss, in the course of the variation of the parameters.



قيم البحث

اقرأ أيضاً

We investigate the effect of parity-time (PT)-symmetric optical potentials on the radiation of achiral and chiral emitters. Mode coalescence and the appearance of exceptional points lead to orders-of-magnitude enhancements in the emitted dipole power . Further, the emitter can be tuned to behave as a strong optical source or absorber based on the non-Hermiticity parameter. Chiral enantiomers radiating near PT metamaterials exhibit a 4.5-fold difference in their decay rate. The results of this work could enable new atom-cavity interactions for quantum optics, as well as all- optical enantio-specific separation.
150 - Zichao Wen , Carl M. Bender 2020
One-dimensional PT-symmetric quantum-mechanical Hamiltonians having continuous spectra are studied. The Hamiltonians considered have the form $H=p^2+V(x)$, where $V(x)$ is odd in $x$, pure imaginary, and vanishes as $|x|toinfty$. Five PT-symmetric po tentials are studied: the Scarf-II potential $V_1(x)=iA_1,{rm sech}(x)tanh(x)$, which decays exponentially for large $|x|$; the rational potentials $V_2(x)=iA_2,x/(1+x^4)$ and $V_3(x)=iA_3,x/(1+|x|^3)$, which decay algebraically for large $|x|$; the step-function potential $V_4(x)=iA_4,{rm sgn}(x)theta(2.5-|x|)$, which has compact support; the regulated Coulomb potential $V_5(x)=iA_5,x/(1+x^2)$, which decays slowly as $|x|toinfty$ and may be viewed as a long-range potential. The real parameters $A_n$ measure the strengths of these potentials. Numerical techniques for solving the time-independent Schrodinger eigenvalue problems associated with these potentials reveal that the spectra of the corresponding Hamiltonians exhibit universal properties. In general, the eigenvalues are partly real and partly complex. The real eigenvalues form the continuous part of the spectrum and the complex eigenvalues form the discrete part of the spectrum. The real eigenvalues range continuously in value from $0$ to $+infty$. The complex eigenvalues occur in discrete complex-conjugate pairs and for $V_n(x)$ ($1leq nleq4$) the number of these pairs is finite and increases as the value of the strength parameter $A_n$ increases. However, for $V_5(x)$ there is an {it infinite} sequence of discrete eigenvalues with a limit point at the origin. This sequence is complex, but it is similar to the Balmer series for the hydrogen atom because it has inverse-square convergence.
We show that complex PT-symmetric photonic lattices can lead to a new class of self-imaging Talbot effects. For this to occur, we find that the input field pattern, has to respect specific periodicities which are dictated by the symmetries of the sys tem. While at the spontaneous PT-symmetry breaking point, the image revivals occur at Talbot lengths governed by the characteristics of the passive lattice, at the exact phase it depends on the gain and loss parameter thus allowing one to control the imaging process.
We show that non-linear optical structures involving a balanced gain-loss profile, can act as unidirectional optical valves. This is made possible by exploiting the interplay between the fundamental symmetries of parity (P) and time (T), with optical nonlinear effects. This novel unidirectional dynamics is specifically demonstrated for the case of an integrable PT-symmetric nonlinear system.
We investigate the scattering response of parity-time (PT) symmetric structures. We show that, due to the local flow of energy between gain and loss regions, such systems can deflect light in unusual ways, as a function of the gain/loss contrast. Suc h structures are highly anisotropic and their scattering patterns can drastically change as a function of the angle of incidence. In addition, we derive a modified optical theorem for PT-symmetric scattering systems, and discuss its ramifications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا