ترغب بنشر مسار تعليمي؟ اضغط هنا

Vertex corrections to the polarizability do not improve the GW approximation for the ionization potential of molecules

120   0   0.0 ( 0 )
 نشر من قبل Timothy Berkelbach
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The $GW$ approximation is based on the neglect of vertex corrections, which appear in the exact self-energy and the exact polarizability. Here, we investigate the importance of vertex corrections in the polarizability only. We calculate the polarizability with equation-of-motion coupled-cluster theory with single and double excitations (EOM-CCSD), which rigorously includes a large class of diagrammatically-defined vertex corrections beyond the random phase approximation (RPA). As is well-known, the frequency-dependent polarizability predicted by EOM-CCSD is quite different and generally more accurate than that predicted by the RPA. We evaluate the effect of these vertex corrections on a test set of 20 atoms and molecules. When using a Hartree-Fock reference, ionization potentials predicted by the $GW$ approximation with the RPA polarizability are typically overestimated with a mean absolute error of 0.3 eV. However, those predicted with a vertex-corrected polarizability are typically underestimated with an increased mean absolute error of 0.5 eV. This result suggests that vertex corrections in the self-energy cannot be neglected, at least for molecules. We also assess the behavior of eigenvalue self-consistency in vertex-corrected $GW$ calculations, finding a further worsening of the predicted ionization potentials.



قيم البحث

اقرأ أيضاً

We present first-principles calculations of the impact ionization rate (IIR) in the $GW$ approximation ($GW$A) for semiconductors. The IIR is calculated from the quasiparticle (QP) width in the $GW$A, since it can be identified as the decay rate of a QP into lower energy QP plus an independent electron-hole pair. The quasiparticle self-consistent $GW$ method was used to generate the noninteracting hamiltonian the $GW$A requires as input. Small empirical corrections were added so as to reproduce experimental band gaps. Our results are in reasonable agreement with previous work, though we observe some discrepancy. In particular we find high IIR at low energy in the narrow gap semiconductor InAs.
We follow the evolution of the Ionization Potential (IP) for the paradigmatic quasi-one-dimensional trans-acetylene family of conjugated molecules, from short to long oligomers and to the infinite polymer trans-poly-acetylene (TPA). Our results for s hort oligomers are very close to experimental available data. We find that the IP varies with oligomer length and converges to the given value for TPA with a smooth, coupled inverse-length-exponential behavior. Our prediction is based on an internally-consistent scheme to adjust the exchange mixing parameter $alpha$ of the PBEh hybrid density functional, so as to obtain a description of the electronic structure consistent with the quasiparticle approximation for the IP. This is achieved by demanding that the corresponding quasiparticle correction, in the GW@PBEh approximation, vanishes for the IP when evaluated at PBEh($alpha^{ic}$). We find that $alpha^{ic}$ is also system-dependent and converges with increasing oligomer length, allowing to capture the dependence of IP and other electronic properties.
81 - Li Zhu , Yiyang Lin , Kang Liu 2021
Electrochemical CO2 reduction is a promising strategy for utilization of CO2 and intermittent excess electricity. Cu is the only single-metal catalyst that can electrochemically convert CO2 to multi-carbon products. However, Cu has an undesirable sel ectivity and activity for C2 products, due to its insufficient amount of CO* for C-C coupling. Considering the strong CO2 adsorption and ultra-fast reaction kinetics of CO* formation on Pd, an intimate CuPd(100) interface was designed to lower the intermediate reaction barriers and then improve the efficiency of C2 products. Density functional theory (DFT) calculations showed that the CuPd(100) interface has enhanced CO2 adsorption and decreased CO2* hydrogenation energy barrier, which are beneficial for C-C coupling. The potential-determining step (PDS) barrier of CO2 to C2 products on CuPd(100) interface is 0.61 eV, which is lower than that on Cu(100) (0.72 eV). Motivated by the DFT calculation, the CuPd(100) interface catalyst was prepared by a facile chemical solution method and demonstrated by transmission electron microscope (TEM). The CO2 temperature programmed desorption (CO2-TPD) and gas sensor experiments proved the enhancements of CO2 adsorption and CO2* hydrogenation abilities on CuPd(100) interface catalyst. As a result, the obtained CuPd(100) interface catalyst exhibits a C2 Faradaic efficiency of 50.3 (+/-) 1.2% at -1.4 VRHE in 0.1 M KHCO3, which is 2.1 times higher than 23.6(+/-) 1.5% of Cu catalyst. This work provides a rational design of Cu-based electrocatalyst for multi-carbon products by fine-tuning the intermediate reaction barriers.
We present a new all-electron, augmented-wave implementation of the GW approximation using eigenfunctions generated by a recent variant of the full-potential LMTO method. The dynamically screened Coulomb interaction W is expanded in a mixed basis set which consists of two contributions, local atom-centered functions confined to muffin-tin spheres, and plane waves with the overlap to the local functions projected out. The former can include any of the core states; thus the core and valence states can be treated on an equal footing. Systematic studies of semiconductors and insulators show that the GW fundamental bandgaps consistently fall low in comparison to experiment, and also the quasiparticle levels differ significantly from other, approximate methods, in particular those that approximate the core with a pseudopotential.
The optimized effective potential (OEP) method presents an unambiguous way to construct the Kohn-Sham potential corresponding to a given diagrammatic approximation for the exchange-correlation functional. The OEP from the random-phase approximation ( RPA) has played an important role ever since the conception of the OEP formalism. However, the solution of the OEP equation is computationally fairly expensive and has to be done in a self-consistent way. So far, large scale solid state applications have therefore been performed only using the quasiparticle approximation (QPA), neglecting certain dynamical screening effects. We obtain the exact RPA-OEP for 15 semiconductors and insulators by direct solution of the linearized Sham-Schluter equation. We investigate the accuracy of the QPA on Kohn-Sham band gaps and dielectric constants, and comment on the issue of self-consistency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا