ﻻ يوجد ملخص باللغة العربية
The $GW$ approximation is based on the neglect of vertex corrections, which appear in the exact self-energy and the exact polarizability. Here, we investigate the importance of vertex corrections in the polarizability only. We calculate the polarizability with equation-of-motion coupled-cluster theory with single and double excitations (EOM-CCSD), which rigorously includes a large class of diagrammatically-defined vertex corrections beyond the random phase approximation (RPA). As is well-known, the frequency-dependent polarizability predicted by EOM-CCSD is quite different and generally more accurate than that predicted by the RPA. We evaluate the effect of these vertex corrections on a test set of 20 atoms and molecules. When using a Hartree-Fock reference, ionization potentials predicted by the $GW$ approximation with the RPA polarizability are typically overestimated with a mean absolute error of 0.3 eV. However, those predicted with a vertex-corrected polarizability are typically underestimated with an increased mean absolute error of 0.5 eV. This result suggests that vertex corrections in the self-energy cannot be neglected, at least for molecules. We also assess the behavior of eigenvalue self-consistency in vertex-corrected $GW$ calculations, finding a further worsening of the predicted ionization potentials.
We present first-principles calculations of the impact ionization rate (IIR) in the $GW$ approximation ($GW$A) for semiconductors. The IIR is calculated from the quasiparticle (QP) width in the $GW$A, since it can be identified as the decay rate of a
We follow the evolution of the Ionization Potential (IP) for the paradigmatic quasi-one-dimensional trans-acetylene family of conjugated molecules, from short to long oligomers and to the infinite polymer trans-poly-acetylene (TPA). Our results for s
Electrochemical CO2 reduction is a promising strategy for utilization of CO2 and intermittent excess electricity. Cu is the only single-metal catalyst that can electrochemically convert CO2 to multi-carbon products. However, Cu has an undesirable sel
We present a new all-electron, augmented-wave implementation of the GW approximation using eigenfunctions generated by a recent variant of the full-potential LMTO method. The dynamically screened Coulomb interaction W is expanded in a mixed basis set
The optimized effective potential (OEP) method presents an unambiguous way to construct the Kohn-Sham potential corresponding to a given diagrammatic approximation for the exchange-correlation functional. The OEP from the random-phase approximation (