ترغب بنشر مسار تعليمي؟ اضغط هنا

GPU acceleration of an iterative scheme for gas-kinetic model equations with memory reduction techniques

72   0   0.0 ( 0 )
 نشر من قبل Lianhua Zhu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents a Graphics Processing Units (GPUs) acceleration method of an iterative scheme for gas-kinetic model equations. Unlike the previous GPU parallelization of explicit kinetic schemes, this work features a fast converging iterative scheme. The memory reduction techniques in this method enable full three-dimensional (3D) solution of kinetic model equations in contemporary GPUs usually with a limited memory capacity that otherwise would need terabytes of memory. The GPU algorithm is validated against the DSMC simulation of the 3D lid-driven cavity flow and the supersonic rarefied gas flow past a cube with grids size up to 0.7 trillion points in the phase space. The performance of the GPU algorithm is assessed by comparing with the corresponding parallel CPU program using Message Passing Interface (MPI). The profiling on several models of GPUs shows that the algorithm has a medium to high level of utilization of the GPUs computing and memory resources. A $190times$ speedup can be achieved on the Tesla K40 GPUs against a single core of Intel Xeon-E5-2680v3 CPU for the 3D lid-driven cavity flow.



قيم البحث

اقرأ أيضاً

In this paper, an efficient high-order gas-kinetic scheme (EHGKS) is proposed to solve the Euler equations for compressible flows. We re-investigate the underlying mechanism of the high-order gas-kinetic scheme (HGKS) and find a new strategy to impro ve its efficiency. The main idea of the new scheme contains two parts. Firstly, inspired by the state-of-art simplifications on the third-order HGKS, we extend the HGKS to the case of arbitrary high-order accuracy and eliminate its unnecessary high-order dissipation terms. Secondly, instead of computing the derivatives of particle distribution function and their complex moments, we introduce a Lax-Wendroff procedure to compute the high-order derivatives of macroscopic quantities directly. The new scheme takes advantage of both HGKS and the Lax-Wendroff procedure, so that it can be easily extended to the case of arbitrary high-order accuracy with practical significance. Typical numerical tests are carried out by EHGKS, with the third, fifth and seventh-order accuracy. The presence of good resolution on the discontinuities and flow details, together with the optimal CFL numbers, validates the high accuracy and strong robustness of EHGKS. To compare the efficiency, we present the results computed by the EHGKS, the original HGKS and Runge-Kutta-WENO-GKS. This further demonstrates the advantages of EHGKS.
364 - C.L. Tian , K. Xu , K.L. Chan 2008
This paper extends the gas-kinetic scheme for one-dimensional inviscid shallow water equations (J. Comput. Phys. 178 (2002), pp. 533-562) to multidimensional gas dynamic equations under gravitational fields. Four important issues in the construction of a well-balanced scheme for gas dynamic equations are addressed. First, the inclusion of the gravitational source term into the flux function is necessary. Second, to achieve second-order accuracy of a well-balanced scheme, the Chapman-Enskog expansion of the Boltzmann equation with the inclusion of the external force term is used. Third, to avoid artificial heating in an isolated system under a gravitational field, the source term treatment inside each cell has to be evaluated consistently with the flux evaluation at the cell interface. Fourth, the multidimensional approach with the inclusion of tangential gradients in two-dimensional and three-dimensional cases becomes important in order to maintain the accuracy of the scheme. Many numerical examples are used to validate the above issues, which include the comparison between the solutions from the current scheme and the Strang splitting method. The methodology developed in this paper can also be applied to other systems, such as semi-conductor device simulations under electric fields.
The discrete unified gas kinetic scheme (DUGKS) is a new finite volume (FV) scheme for continuum and rarefied flows which combines the benefits of both Lattice Boltzmann Method (LBM) and unified gas kinetic scheme (UGKS). By reconstruction of gas dis tribution function using particle velocity characteristic line, flux contains more detailed information of fluid flow and more concrete physical nature. In this work, a simplified DUGKS is proposed with reconstruction stage on a whole time step instead of half time step in original DUGKS. Using temporal/spatial integral Boltzmann Bhatnagar-Gross-Krook (BGK) equation, the transformed distribution function with inclusion of collision effect is constructed. The macro and mesoscopic fluxes of the cell on next time step is predicted by reconstruction of transformed distribution function at interfaces along particle velocity characteristic lines. According to the conservation law, the macroscopic variables of the cell on next time step can be updated through its macroscopic flux. Equilibrium distribution function on next time step can also be updated. Gas distribution function is updated by FV scheme through its predicted mesoscopic flux in a time step. Compared with the original DUGKS, the computational process of the proposed method is more concise because of the omission of half time step flux calculation. Numerical time step is only limited by the Courant-Friedrichs-Lewy (CFL) condition and relatively good stability has been preserved. Several test cases, including the Couette flow, lid-driven cavity flow, laminar flows over a flat plate, a circular cylinder, and an airfoil, as well as micro cavity flow cases are conducted to validate present scheme. The numerical simulation results agree well with the references results.
159 - Lianhua Zhu , Xingcai Pi , Wei Su 2020
The general synthetic iteration scheme (GSIS) is extended to find the steady-state solution of nonlinear gas kinetic equation, removing the long-standing problems of slow convergence and requirement of ultra-fine grids in near-continuum flows. The ke y ingredients of GSIS are that the gas kinetic equation and macroscopic synthetic equations are tightly coupled, and the constitutive relations in macroscopic synthetic equations explicitly contain Newtons law of shear stress and Fouriers law of heat conduction. The higher-order constitutive relations describing rarefaction effects are calculated from the velocity distribution function, however, their constructions are simpler than our previous work (Su et al. Journal of Computational Physics 407 (2020) 109245) for linearized gas kinetic equations. On the other hand, solutions of macroscopic synthetic equations are used to inform the evolution of gas kinetic equation at the next iteration step. A rigorous linear Fourier stability analysis in periodic system shows that the error decay rate of GSIS can be smaller than 0.5, which means that the deviation to steady-state solution can be reduced by 3 orders of magnitude in 10 iterations. Other important advantages of the GSIS are (i) it does not rely on the specific form of Boltzmann collision operator and (ii) it can be solved by sophisticated techniques in computational fluid dynamics, making it amenable to large scale engineering applications. In this paper, the efficiency and accuracy of GSIS is demonstrated by a number of canonical test cases in rarefied gas dynamics.
We demonstrate the first implementation of recently-developed fast explicit kinetic integration algorithms on modern graphics processing unit (GPU) accelerators. Taking as a generic test case a Type Ia supernova explosion with an extremely stiff ther monuclear network having 150 isotopic species and 1604 reactions coupled to hydrodynamics using operator splitting, we demonstrate the capability to solve of order 100 realistic kinetic networks in parallel in the same time that standard implicit methods can solve a single such network on a CPU. This orders-of-magnitude decrease in compute time for solving systems of realistic kinetic networks implies that important coupled, multiphysics problems in various scientific and technical fields that were intractible, or could be simulated only with highly schematic kinetic networks, are now computationally feasible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا