ترغب بنشر مسار تعليمي؟ اضغط هنا

Highly-ordered wide bandgap materials for quantized anomalous Hall and magnetoelectric effects

158   0   0.0 ( 0 )
 نشر من قبل Mikhail Otrokov
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An interplay of spin-orbit coupling and intrinsic magnetism is known to give rise to the quantum anomalous Hall and topological magnetoelectric effects under certain conditions. Their realization could open access to low power consumption electronics as well as many fundamental phenomena like image magnetic monopoles, Majorana fermions and others. Unfortunately, being realized very recently, these effects are only accessible at extremely low temperatures and the lack of appropriate materials that would enable the temperature increase is a most severe challenge. Here, we propose a novel material platform with unique combination of properties making it perfectly suitable for the realization of both effects at elevated temperatures. The key element of the computational material design is an extension of a topological insulator (TI) surface by a thin film of ferromagnetic insulator, which is both structurally and compositionally compatible with the TI. Following this proposal we suggest a variety of specific systems and discuss their numerous advantages, in particular wide band gaps with the Fermi level located in the gap.

قيم البحث

اقرأ أيضاً

Intrinsic magnetic topological insulators offer low disorder and large magnetic bandgaps for robust magnetic topological phases operating at higher temperatures. By controlling the layer thickness, emergent phenomena such as the Quantum Anomalous Hal l (QAH) effect and axion insulator phases have been realised. These observations occur at temperatures significantly lower than the Neel temperature of bulk MnBi2Te4, and measurement of the magnetic energy gap at the Dirac point in ultra-thin MnBi2Te4 has yet to be achieved. Critical to achieving the promise of this system is a direct measurement of the layer-dependent energy gap and verifying whether the gap is magnetic in the QAH phase. Here we utilise temperature dependent angle-resolved photoemission spectroscopy to study epitaxial ultra-thin MnBi2Te4. We directly observe a layer dependent crossover from a 2D ferromagnetic insulator with a bandgap greater than 780 meV in one septuple layer (1 SL) to a QAH insulator with a large energy gap (>100 meV) at 8 K in 3 and 5 SL MnBi2Te4. The QAH gap is confirmed to be magnetic in origin, as it abruptly diminishes with increasing temperature above 8 K. The direct observation of a large magnetic energy gap in the QAH phase of few-SL MnBi2Te4 is promising for further increasing the operating temperature of QAH materials.
Active learning has been increasingly applied to screening functional materials from existing materials databases with desired properties. However, the number of known materials deposited in the popular materials databases such as ICSD and Materials Project is extremely limited and consists of just a tiny portion of the vast chemical design space. Herein we present an active generative inverse design method that combines active learning with a deep variational autoencoder neural network and a generative adversarial deep neural network model to discover new materials with a target property in the whole chemical design space. The application of this method has allowed us to discover new thermodynamically stable materials with high band gap (SrYF$_5$) and semiconductors with specified band gap ranges (SrClF$_3$, CaClF$_5$, YCl$_3$, SrC$_2$F$_3$, AlSCl, As$_2$O$_3$), all of which are verified by the first principle DFT calculations. Our experiments show that while active learning itself may sample chemically infeasible candidates, these samples help to train effective screening models for filtering out materials with desired properties from the hypothetical materials created by the generative model. The experiments show the effectiveness of our active generative inverse design approach.
Exploration of the novel relationship between magnetic order and topological semimetals has received enormous interest in a wide range of both fundamental and applied research. Here we predict that soft ferromagnetic (FM) material EuB6 can achieve mu ltiple topological semimetal phases by simply tuning the direction of the magnetic moment. Explicitly, EuB6 is a topological nodal-line semimetal when the moment is aligned along the [001] direction, and it evolves into a Weyl semimetal with three pairs of Weyl nodes by rotating the moment to the [111] direction. Interestingly, we identify a novel semimetal phase featuring the coexistence of a nodal line and Weyl nodes with the moment in the [110] direction. Topological surface states and anomalous Hall conductivity, which is sensitive to the magnetic order, have been computed and are expected to be experimentally observable. Large-Chern-number quantum anomalous Hall effect can be realized in its [111]-oriented quantum-well structure.
Antiferromagnets with tunable phase transitions are promising for future spintronics applications. We investigated spin-dependent transport properties of FeRh thin films, which show a temperature driven antiferromagnetic-to-ferromagnetic phase transi tion. Epitaxial FeRh films grown on MgO (001) substrates exhibit a clear magnetic and electronic phase transition. By performing anomalous Hall and anomalous Nernst effect measurements over a wide range of temperatures, we demonstrate that the thermally driven transition shows distinctly different transverse transport on both side of the phase transition. Particularly, a sign change of both anomalous Hall and Nernst signals is observed.
Mutiferroics are a novel class of next generation multifunctional materials, which display simultaneous magnetic spin, electric dipole, and ferroelastic ordering, and have drawn increasing interest due to their multi-functionality for a variety of de vice applications. Since single-phase materials exist rarely in nature with such cross-coupling properties, an intensive research activity is being pursued towards the discovery of new single-phase multiferroic materials and the design of new engineered materials with strong magneto-electric (ME) coupling. This review article summarizes the development of different kinds of multiferroic material: single-phase and composite ceramic, laminated composite, and nanostructured thin films. Thin-film nanostructures have higher magnitude direct ME coupling values and clear evidence of indirect ME coupling compared with bulk materials. Promising ME coupling coefficients have been reported in laminated composite materials in which signal to noise ratio is good for device fabrication. We describe the possible applications of these materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا