ترغب بنشر مسار تعليمي؟ اضغط هنا

Stability of matter-wave solitons in a density-dependent gauge theory

95   0   0.0 ( 0 )
 نشر من قبل Robert Dingwall
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the linear stability of chiral matter-wave solitons described by a density-dependent gauge theory. By studying the associated Bogoliubov-de Gennes equations both numerically and analytically, we find that the stability problem effectively reduces to that of the standard Gross-Pitaevskii equation, proving that the solitons are stable to linear perturbations. In addition, we formulate the stability problem in the framework of the Vakhitov-Kolokolov criterion and provide supplementary numerical simulations which illustrate the absence of instabilities when the soliton is initially perturbed.



قيم البحث

اقرأ أيضاً

We study interactions between bright matter-wave solitons which acquire chiral transport dynamics due to an optically-induced density-dependent gauge potential. Through numerical simulations, we find that the collision dynamics feature several non-in tegrable phenomena, from inelastic collisions including population transfer and radiation losses to short-lived bound states and soliton fission. An effective quasi-particle model for the interaction between the solitons is derived by means of a variational approximation, which demonstrates that the inelastic nature of the collision arises from a coupling of the gauge field to velocities of the solitons. In addition, we derive a set of interaction potentials which show that the influence of the gauge field appears as a short-range potential, that can give rise to both attractive and repulsive interactions.
We show how access to sufficiently flexible trapping potentials could be exploited in the generation of three-dimensional atomic bright matter-wave solitons. Our proposal provides a route towards producing bright solitonic states with good fidelity, in contrast to, for example, a non-adiabatic sweeping of an applied magnetic field through a Feshbach resonance.
Reflection of wave packets from downward potential steps and attractive potentials, known as a quantum reflection, has been explored for bright matter-wave solitons with the main emphasis on the possibility to trap them on top of a pedestal-shaped po tential. In numerical simulations, we observed that moving solitons return from the borders of the potential and remain trapped for a sufficiently long time. The shuttle motion of the soliton is accompanied by shedding some amount of matter at each reflection from the borders of the trap, thus reducing its norm. The one- and two- soliton configurations are considered. A discontinuous jump of trajectories of colliding solitons has been discussed. The time-shift observed in a step-like decay of the moving solitons norm in the two-soliton configuration is linked to the trajectory jump phenomenon. The obtained results can be of interest for the design of new soliton experiments with Bose-Einstein condensates.
A study of bright matter-wave solitons of a cesium Bose-Einstein condensate (BEC) is presented. Production of a single soliton is demonstrated and dependence of soliton atom number on the interatomic interaction is investigated. Formation of soliton trains in the quasi one-dimensional confinement is shown. Additionally, fragmentation of a BEC has been observed outside confinement, in free space. In the end a double BEC production setup for studying soliton collisions is described.
We develop stability analysis for matter-wave solitons in a two-dimensional (2D) Bose-Einstein condensate loaded in an optical lattice (OL), to which periodic time modulation is applied, in different forms. The stability is studied by dint of the var iational approximation and systematic simulations. For solitons in the semi-infinite gap, well-defined stability patterns are produced under the action of the attractive nonlinearity, clearly exhibiting the presence of resonance frequencies. The analysis is reported for several time-modulation formats, including the case of in-phase modulations of both quasi-1D sublattices, which build the 2D square-shaped OL, and setups with asynchronous modulation of the sublattices. In particular, when the modulations of two sublattices are phase-shifted by {delta}={pi}/2, the stability map is not improved, as the originally well-structured stability pattern becomes fuzzy and the stability at high modulation frequencies is considerably reduced. Mixed results are obtained for anti-phase modulations of the sublattices ({delta}={pi}), where extended stability regions are found for low modulation frequencies, but for high frequencies the stability is weakened. The analysis is also performed in the case of the repulsive nonlinearity, for solitons in the first finite bandgap. It is concluded that, even though stability regions may be found, distinct stability boundaries for the gap solitons cannot be identified clearly. Finally, the stability is also explored for vortex solitons of both the square-shaped and rhombic types (i.e., off- and on-site-centered ones).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا