ﻻ يوجد ملخص باللغة العربية
We report the results provided by the XMM-Newton observation of the X-ray binary pulsar SXP59.0 during its most recent outburst in April 2017. The source was detected at $f_{rm X}$(0.2-12 keV) = 8$times 10^{-11}$ erg cm$^{-2}$ s$^{-1}$, one of its highest flux levels reported to date. The measured pulse period was $P_{rm spin}$ = 58.949(1) s, very similar to the periods measured in most of the previous observations. The pulsed emission was clearly detected over the whole energy range between 0.2 and 12 keV, but the pulse profile is energy dependent and the pulsed fraction increases as the energy increases. Although the time-averaged EPIC spectrum is dominated by a power-law component (with photon index $Gamma = 0.76 pm 0.01$), the data show an evident soft excess, which can be described with the sum of a black-body and a hot thermal plasma component (with temperatures $kT_{rm BB} = 171^{+11}_{-14}$ eV and $kT_{rm APEC} = 1.09^{+0.16}_{-0.09}$ keV, respectively). Moreover, the EPIC and RGS spectra show narrow emission lines due to N, O, Ne, Mg, and Fe. The phase-resolved spectral analysis of the EPIC data shows that the flux of the black-body component varies with the pulse phase, while the plasma component is almost constant. We show that the black-body component can be attributed to the reprocessing of the primary emission by the optically thick material at the inner edge of the accretion disc, while the hot plasma component is due to a diffuse gas far from the accretion region and the narrow emission lines of the RGS spectrum are most probably due to photoionized matter around the accreting source.
We report on an X-ray observation of the Be X-ray Binary Pulsar RX J0059.2-7138, performed by XMM-Newton in March 2014. The 19 ks long observation was carried out about three months after the discovery of the latest outburst from this Small Magellani
We report on the results of Swift and XMM-Newton observations of SMC X-2 during its last outburst in 2015 October, the first one since 2000. The source reached a very high luminosity ($L sim 10^{38}$ erg s$^{-1}$), which allowed us to perform a detai
We report on the results of a NuSTAR observation of the Supergiant Fast X-ray Transient pulsar IGRJ11215-5952 during the peak of its outburst in June 2017. IGRJ11215-5952 is the only SFXT undergoing strictly periodic outbursts, every 165 days. NuSTAR
We report on the results of the $XMM-Newton$ observation of IGR J01572-7259 during its most recent outburst in 2016 May, the first since 2008. The source reached a flux $f sim 10^{-10}$ erg cm$^{-2}$ s$^{-1}$, which allowed us to perform a detailed a
We report on the spectral and timing properties of the accreting millisecond X-ray pulsar IGR J00291+5934 observed by XMM-Newton and NuSTAR during its 2015 outburst. The source is in a hard state dominated at high energies by a comptonization of soft