ﻻ يوجد ملخص باللغة العربية
We present a coherent model that combines jet production from perturbative QCD with strongly-coupled jet-medium interactions described in holography. We use this model to study the modification of an ensemble of jets upon propagation through a quark-gluon plasma resembling central heavy ion collisions. Here the modification of the dijet asymmetry depends strongly on the subleading jet width, which can therefore be an important observable for studying jet-medium interactions. We furthermore show that the modification of the shape of the leading jet is relatively insensitive to the dijet asymmetry, whereas the subleading jet shape modification is much larger for more imbalanced dijets. Finally, we compare the results of our holographic model to a recent CMS measurement.
The striking suppression and modification patterns that are observed in jet observables measured in heavy-ion collisions with respect to the proton-proton baseline have the potential to constrain the spatio-temporal branching process of energetic par
We study the single spin asymmetry in the back-to-back dijet production in transversely polarized proton-proton collisions. Such an asymmetry is generated by the Sivers functions in the incoming polarized proton. We propose a QCD formalism in terms o
Some of the most important probes of the quark-gluon plasma (QGP) produced in heavy ion collisions come from the analysis of how the shape and energy of jets are modified by passage through QGP. We model an ensemble of back-to-back dijets to gain a q
We investigate the effect of soft gluon radiations on the azimuthal angle correlation between the total and relative momenta of two jets in inclusive and exclusive dijet processes. We show that the final state effect induces a sizable $cos(2phi)$ ani
We present a first, detailed study of diffractive dijet photoproduction at the recently approved electron-ion collider (EIC) at BNL. Apart from establishing the kinematic reaches for various beam types, energies and kinematic cuts, we make precise pr