ترغب بنشر مسار تعليمي؟ اضغط هنا

RPC performance vs FE electoronics and detector parameters

53   0   0.0 ( 0 )
 نشر من قبل Roberto Cardarelli
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The first Resistive Plate Chambers detectors were developed for cosmic ray experiments, where low rate capability, good time resolution and low cost per unit of area were needed. These same features, except for the low rate capability, were required in the muon spectrometers of the collider experiments like LHC. For this purpose newRPCdetectors with increased rate capability were developed. The rate capability improvement has been achieved thanks to the transition from streamer to saturated avalanche regime, in which the average charge produced in the gas dicharge is smaller. The price to pay for this working mode switch is the transfer of the amplification from the detector to the FE electorinics. The High luminosity LHC and the future colliders will require even greater rate capability in the muon spectrometer compared to the current one. For this reason, further improving of the rate capability is required. The transition from the saturated avalanche to a low saturated avalanche regime moves in this direction and needs a new front end electronics with better signal to noise ratio, because the average induced charge on the electrode is even smaller. The front end electronics design is crucial for the RPC performances. In this paper we discuss the performances of the RPC detector changing the front end design and the detector parameters.



قيم البحث

اقرأ أيضاً

Together with the recent CLIC detector model CLICdet a new software suite was introduced for the simulation and reconstruction of events in this detector. This note gives a brief introduction to CLICdet and describes the CLIC experimental conditions at 380 GeV and 3 TeV, including beam-induced backgrounds. The simulation and reconstruction tools are introduced, and the physics performance obtained is described in terms of single particles, particles in jets, jet energy resolution and flavour tagging. The performance of the very forward electromagnetic calorimeters is also discussed.
82 - F. Lagarde , A. Fagot , M. Gul 2018
The High Luminosity LHC (HL-LHC) phase is designed to increase by an order of magnitude the amount of data to be collected by the LHC experiments. The foreseen gradual increase of the instantaneous luminosity of up to more than twice its nominal valu e of $10times10^{34} {rm cm}^{-1}{rm s}^{-2}$ during Phase I and Phase II of the LHC running, presents special challenges for the experiments. The region with high pseudo rapidity ($eta$) region of the forward muon spectrometer ($2.4 > |eta| > 1.9$) is not equipped with RPC stations. The increase of the expected particles rate up to 2 kHz cm$^{-1}$ ( including a safety factor 3 ) motivates the installation of RPC chambers to guarantee redundancy with the CSC chambers already present. The current CMS RPC technology cannot sustain the expected background level. A new generation of Glass-RPC (GRPC) using low-resistivity glass was proposed to equip the two most far away of the four high $eta$ muon stations of CMS. In their single-gap version they can stand rates of few kHz cm$^{-1}$. Their time precision of about 1 ns can allow to reduce the noise contribution leading to an improvement of the trigger rate. The proposed design for large size chambers is examined and some preliminary results obtained during beam tests at Gamma Irradiation Facility (GIF++) and Super Proton Synchrotron (SPS) at CERN are shown. They were performed to validate the capability of such detectors to support high irradiation environment with limited consequence on their efficiency.
The Resistive Plate Chambers (RPCs) are employed in the CMS experiment at the LHC as dedicated trigger system both in the barrel and in the endcap. This note presents results of the RPC detector uniformity and stability during the 2011 data taking pe riod, and preliminary results obtained with 2012 data. The detector uniformity has been ensured with a dedicated High Voltage scan with LHC collisions, in order to determine the optimal operating working voltage of each individual RPC chamber installed in CMS. Emphasis is given on the procedures and results of the High Voltage calibration. Moreover, an increased detector stability has been obtained by automatically taking into account temperature and atmospheric pressure variations in the CMS cavern.
The CMS RPC muon detector utilizes a gas recirculation system called closed loop (CL) to cope with large gas mixture volumes and costs. A systematic study of CL gas purifiers has been carried out over 400 days between July 2008 and August 2009 at CER N in a low-radiation test area, with the use of RPC chambers with currents monitoring, and gas analysis sampling points. The study aimed to fully clarify the presence of pollutants, the chemistry of purifiers used in the CL, and the regeneration procedure. Preliminary results on contaminants release and purifier characterization are reported.
173 - L. Aliaga , L. Bagby , B. Baldin 2013
The MINERvA experiment is designed to perform precision studies of neutrino-nucleus scattering using $ u_mu$ and ${bar u}_mu$ neutrinos incident at 1-20 GeV in the NuMI beam at Fermilab. This article presents a detailed description of the minerva det ector and describes the {em ex situ} and {em in situ} techniques employed to characterize the detector and monitor its performance. The detector is comprised of a finely-segmented scintillator-based inner tracking region surrounded by electromagnetic and hadronic sampling calorimetry. The upstream portion of the detector includes planes of graphite, iron and lead interleaved between tracking planes to facilitate the study of nuclear effects in neutrino interactions. Observations concerning the detector response over sustained periods of running are reported. The detector design and methods of operation have relevance to future neutrino experiments in which segmented scintillator tracking is utilized.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا