ترغب بنشر مسار تعليمي؟ اضغط هنا

Infrared activation of the Higgs mode by supercurrent injection in superconducting NbN

277   0   0.0 ( 0 )
 نشر من قبل Sachiko Nakamura Dr.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Higgs mode in superconductors, i.e. the collective amplitude mode of the order parameter does not associate with charge nor spin fluctuations, therefore it does not couple to the electromagnetic field in the linear response regime. On the contrary to this common understanding, here, we demonstrate that, if the dc supercurrent is introduced into the superconductor, the Higgs mode becomes infrared active and is directly observed in the linear optical conductivity measurement. We observed a sharp resonant peak at $omega=2Delta$ in the optical conductivity spectrum of a thin-film NbN in the presence of dc supercurrent, showing a reasonable agreement with the recent theoretical prediction. The method as proven by this work opens a new pathway to study the Higgs mode in a wide variety of superconductors.

قيم البحث

اقرأ أيضاً

Giant second-harmonic generation (SHG) in the terahertz (THz) frequency range is observed in a thin film of an s-wave superconductor NbN, where the time-reversal ($mathcal{T}$-) and space-inversion ($mathcal{P}$-) symmetries are simultaneously broken by supercurrent injection. We demonstrate that the phase of the second-harmonic (SH) signal flips when the direction of supercurrent is inverted, i.e., the signal is ascribed to the nonreciprocal response that occurs under broken $mathcal{P}$- and $mathcal{T}$-symmetries. The temperature dependence of the SH signal exhibits a sharp resonance, which is accounted for by the vortex motion driven by the THz electric field in an anharmonic pinning potential. The maximum conversion ratio $eta_{mathrm{SHG}}$ reaches $approx10^{-2}$ in a thin film NbN with the thickness of 25 nm after the field cooling with a very small magnetic field of $approx1$ Oe, for a relatively weak incident THz electric field of 2.8 kV/cm at 0.48 THz.
Recent advances in time-domain terahertz (THz) spectroscopy have unveiled that resonantly-enhanced strong THz third-harmonic generation (THG) mediated by the collective Higgs amplitude mode occurs in s-wave superconductors, where charge-density fluct uations (CDF) have also been shown to contribute to the nonlinear third-order susceptibility. It has been theoretically proposed that the nonlinear responses of Higgs and CDF exhibit essentially different polarization dependences. Here we experimentally discriminate the two contributions by polarization-resolved intense THz transmission spectroscopy for a single-crystal NbN film. The result shows that the resonant THG in the transmitted light always appears in the polarization parallel to that of the incident light with no appreciable crystal axis dependence. When we compare this with the theoretical calculation here with the BCS approximation and the dynamical mean-field theory for a model of NbN constructed from first principles, the experimental result strongly indicates that the Higgs mode rather than the CDF dominates the THG resonance in NbN. A possible mechanism for this is discussed such as the retardation effect in the phonon-mediated pairing interaction beyond BCS.
We report on the inelastic-scattering rate of electrons on phonons and relaxation of electron energy studied by means of magnetoconductance, and photoresponse, respectively, in a series of strongly disordered superconducting NbN films. The studied fi lms with thicknesses in the range from 3 to 33 nm are characterized by different Ioffe-Regel parameters but an almost constant product q_Tl(q_T is the wave vector of thermal phonons and l is the elastic mean free path of electrons). In the temperature range 14-30 K, the electron-phonon scattering rates obey temperature dependencies close to the power law 1/tau_{e-ph} sim T^n with the exponents n = 3.2-3.8. We found that in this temperature range tau_{e-ph} and n of studied films vary weakly with the thickness and square resistance. At 10 K electron-phonon scattering times are in the range 11.9-17.5 ps. The data extracted from magnetoconductance measurements were used to describe the experimental photoresponse with the two-temperature model. For thick films, the photoresponse is reasonably well described without fitting parameters, however, for thinner films, the fit requires a smaller heat capacity of phonons. We attribute this finding to the reduced density of phonon states in thin films at low temperatures. We also show that the estimated Debye temperature in the studied NbN films is noticeably smaller than in bulk material.
We report superconducting kinetic inductance memory (SKIM) element, which can be controlled exclusively by the bias supercurrent, without involving magnetic fields and heating elements. The SKIM is non-volatile memory. The device is made of Nb and it can operate reliable up to 2.8 K. The achieved error rate is as low as one in 100000 operations.
108 - Ryo Shimano , Naoto Tsuji 2019
When a continuous symmetry of a physical system is spontaneously broken, two types of collective modes typically emerge: the amplitude and phase modes of the order-parameter fluctuation. For superconductors, the amplitude mode is recently referred to as the Higgs mode as it is a condensed-matter analogue of a Higgs boson in particle physics. Higgs mode is a scalar excitation of the order parameter, distinct from charge or spin fluctuations, and thus does not couple to electromagnetic fields linearly. This is why the Higgs mode in superconductors has evaded experimental observations over a half century after the initial theoretical prediction, except for a charge-density-wave coexisting system. With the advance of nonlinear and time-resolved terahertz spectroscopy techniques, however, it has become possible to study the Higgs mode through the nonlinear light-Higgs coupling. In this review, we overview recent progresses on the study of the Higgs mode in superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا