ترغب بنشر مسار تعليمي؟ اضغط هنا

Droplets I: Pressure-Dominated Sub-0.1 pc Coherent Structures in L1688 and B18

125   0   0.0 ( 0 )
 نشر من قبل Hope Chen
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the observation and analysis of newly discovered coherent structures in the L1688 region of Ophiuchus and the B18 region of Taurus. Using data from the Green Bank Ammonia Survey (GAS), we identify regions of high density and near-constant, almost-thermal, velocity dispersion. Eighteen coherent structures are revealed, twelve in L1688 and six in B18, each of which shows a sharp transition to coherence in velocity dispersion around its periphery. The identification of these structures provides a chance to study the coherent structures in molecular clouds statistically. The identified coherent structures have a typical radius of 0.04 pc and a typical mass of 0.4 Msun, generally smaller than previously known coherent cores identified by Goodman et al. (1998), Caselli et al. (2002), and Pineda et al. (2010). We call these structures droplets. We find that unlike previously known coherent cores, these structures are not virially bound by self-gravity and are instead predominantly confined by ambient pressure. The droplets have density profiles shallower than a critical Bonnor-Ebert sphere, and they have a velocity (VLSR) distribution consistent with the dense gas motions traced by NH3 emission. These results point to a potential formation mechanism through pressure compression and turbulent processes in the dense gas. We present a comparison with a magnetohydrodynamic simulation of a star-forming region, and we speculate on the relationship of droplets with larger, gravitationally bound coherent cores, as well as on the role that droplets and other coherent structures play in the star formation process.

قيم البحث

اقرأ أيضاً

We present an analysis of the internal velocity structures of the newly identified sub-0.1 pc coherent structures, droplets, in L1688 and B18. By fitting 2D linear velocity fields to the observed maps of velocity centroids, we determine the magnitude s of linear velocity gradients and examine the potential rotational motions that could lead to the observed velocity gradients. The results show that the droplets follow the same power-law relation between the velocity gradient and size found for larger-scale dense cores. Assuming that rotational motion giving rise to the observed velocity gradient in each core is a solid-body rotation of a rotating body with a uniform density, we derive the net rotational motions of the droplets. We find a ratio between rotational and gravitational energies, $beta$, of $sim 0.046$ for the droplets, and when including both droplets and larger-scale dense cores, we find $beta sim 0.039$. We then examine the alignment between the velocity gradient and the major axis of each droplet, using methods adapted from the histogram of relative orientations (HRO) introduced by Soler et al. (2013). We find no definitive correlation between the directions of velocity gradients and the elongations of the cores. Lastly, we discuss physical processes other than rotation that may give rise to the observed velocity field.
Stars form in cold dense cores showing subsonic velocity dispersions. The parental molecular clouds display higher temperatures and supersonic velocity dispersions. The transition from core to cloud has been observed in velocity dispersion, but tempe rature and abundance variations are unknown. We aim to study the transition from cores to ambient cloud in temperature and velocity dispersion using a single tracer. We use NH3 (1,1) and (2,2) maps in L1688 from the Green Bank Ammonia Survey, smoothed to 1, and determine the physical properties from fits. We identify the coherent cores and study the changes in temperature and velocity dispersion from cores to the surrounding cloud. We obtain a kinetic temperature map tracing the extended cloud, improving from previous maps tracing mostly the cores. The cloud is 4-6 K warmer than the cores, and shows a larger velocity dispersion (diff. = 0.15-0.25 km/s). Comparing to Herschel-based measurements, we find that cores show kinetic temperature $approx$1.8 K lower than the dust temperature; while the gas temperature is higher than the dust temperature in the cloud. We find an average p-NH3 fractional abundance (with respect to H2) of $(4.2pm0.2) times 10^{-9}$ towards the coherent cores, and $(1.4pm0.1) times 10^{-9}$ outside the core boundaries. Using stacked spectra, we detect two components, one narrow and one broad, towards cores and their neighbourhoods. We find the turbulence in the narrow component to be correlated to the size of the structure (Pearson-r=0.54). With these unresolved regional measurements, we obtain a turbulence-size relation of ${sigma}_{v,NT}propto r^{0.5}$, similar to previous findings using multiple tracers. We discover that the subsonic component extends up to 0.15 pc beyond the typical coherent boundaries, unveiling larger extents of the coherent cores and showing gradual transition to coherence over ~0.2 pc.
Context : Star formation takes place in cold dense cores in molecular clouds. Earlier observations have found that dense cores exhibit subsonic non-thermal velocity dispersions. In contrast, CO observations show that the ambient large-scale cloud is warmer and has supersonic velocity dispersions. Aims : We aim to study the ammonia ($rm NH_3$) molecular line profiles with exquisite sensitivity towards the coherent cores in L1688 in order to study their kinematical properties in unprecedented detail. Methods : We used $rm NH_3$ (1,1) and (2,2) data from the first data release (DR1) in the Green Bank Ammonia Survey (GAS). We first smoothed the data to a larger beam of 1 to obtain substantially more extended maps of velocity dispersion and kinetic temperature, compared to the DR1 maps. We then identified the coherent cores in the cloud and analysed the averaged line profiles towards the cores. Results : For the first time, we detected a faint (mean $rm NH_3$(1,1) peak brightness $<$0.25 K in $T_{MB}$), supersonic component towards all the coherent cores in L1688. We fitted two components, one broad and one narrow, and derived the kinetic temperature and velocity dispersion of each component. The broad components towards all cores have supersonic linewidths ($mathcal{M}_S ge 1$). This component biases the estimate of the narrow dense core components velocity dispersion by $approx$28% and the kinetic temperature by $approx$10%, on average, as compared to the results from single-component fits. Conclusions : Neglecting this ubiquitous presence of a broad component towards all coherent cores causes the typical single-component fit to overestimate the temperature and velocity dispersion. This affects the derived detailed physical structure and stability of the cores estimated from $rm NH_3$ observations.
We use the PPMAP (Point Process MAPping) algorithm to re-analyse the textit{Herschel} and SCUBA-2 observations of the L1688 and L1689 sub-regions of the Ophiuchus molecular cloud. PPMAP delivers maps with high resolution (here $14$, corresponding to $sim 0.01,{rm pc}$ at $sim 140,{rm pc}$), by using the observations at their native resolutions. PPMAP also delivers more accurate dust optical depths, by distinguishing dust of different types and at different temperatures. The filaments and prestellar cores almost all lie in regions with $N_{rm H_2}gtrsim 7times 10^{21},{rm cm}^{-2}$ (corresponding to $A_{_{rm V}}gtrsim 7$). The dust temperature, $T$, tends to be correlated with the dust opacity index, $beta$, with low $T$ and low $beta$ tend concentrated in the interiors of filaments. The one exception to this tendency is a section of filament in L1688 that falls -- in projection -- between the two B stars, S1 and HD147889; here $T$ and $beta$ are relatively high, and there is compelling evidence that feedback from these two stars has heated and compressed the filament. Filament {sc fwhm}s are typically in the range $0.10,{rm pc}$ to $0.15,{rm pc}$. Most filaments have line densities in the range $25,{rm M_{_odot},pc^{-1}}$ to $65,{rm M_{_odot},pc^{-1}}$. If their only support is thermal gas pressure, and the gas is at the canonical temperature of $10,{rm K}$, the filaments are highly supercritical. However, there is some evidence from ammonia observations that the gas is significantly warmer than this, and we cannot rule out the possibility of additional support from turbulence and/or magnetic fields. On the basis of their spatial distribution, we argue that most of the starless cores are likely to disperse (rather than evolving to become prestellar).
We observe the 1.2 mm continuum emission around the OB cluster forming region G10.6-0.4, using the IRAM 30m telescope MAMBO-2 bolometer array and the Submillimeter array. Comparison of the Spitzer 24 $mu$m and 8 $mu$m images with our 1.2 mm continuum maps reveals the ionization front of an HII region, the photon-dominated layer, and several 5 pc scale filaments following the outer edge of the photon-dominated layer. The filaments, which are resolved in the MAMBO-2 observations, show regularly spaced parsec-scale molecular clumps, embedded with a cluster of submillimeter molecular cores as shown in the SMA 0.87 mm observations. Toward the center of the G10.6-0.4 region, the combined SMA+IRAM 30m continuum image reveals several, parsec-scale protrusions. They may continue down to within 0.1 pc of the geometric center of a dense 3 pc size structure, where a 200 M$_{odot}$ OB cluster resides. The observed filaments may facilitate mass accretion onto the central cluster--forming region in the presence of strong radiative and mechanical stellar feedbacks. Their filamentary geometry may also facilitate fragmentation. We did not detect any significant polarized emission at 0.87 mm in the inner 1 pc region with the SMA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا