ﻻ يوجد ملخص باللغة العربية
This paper focuses on two-planet systems in a first-order $(q+1):q$ mean motion resonance and undergoing type-I migration in a disc. We present a detailed analysis of the resonance valid for any value of $q$. Expressions for the equilibrium eccentricities, mean motions and departure from exact resonance are derived in the case of smooth convergent migration. We show that this departure, not assumed to be small, is such that period ratio normally exceeds, but can also be less than, $ (q+1)/q.$ Departure from exact resonance as a function of time for systems starting in resonance and undergoing divergent migration is also calculated. We discuss observed systems in which two low mass planets are close to a first-order resonance. We argue that the data are consistent with only a small fraction of the systems having been captured in resonance. Furthermore, when capture does happen, it is not in general during smooth convergent migration through the disc but after the planets reach the disc inner parts. We show that although resonances may be disrupted when the inner planet enters a central cavity, this alone cannot explain the spread of observed separations. Disruption is found to result in either the system moving interior to the resonance by a few percent, or attaining another resonance. We postulate two populations of low mass planets: a small one for which extensive smooth migration has occurred, and a larger one that formed approximately in-situ with very limited migration.
Recent works on three-planet mean motion resonances (MMRs) have highlighted their importance for understanding the details of the dynamics of planet formation and evolution. While the dynamics of two-planet MMRs are well understood and approximately
We present preliminary though statistically significant evidence that shows that multiplanetary systems that exhibit a 2/1 period commensurability are in general younger than multiplanetary systems without commensurabilities, or even systems with oth
GAIA leads us to step into a new era with a high astrometry precision of 10 uas. Under such a precision, astrometry will play important roles in detecting and characterizing exoplanets. Specially, we can identify planet pairs in mean motion resonance
The statistical results of transiting planets show that there are two peaks around 1.5 and 2.0 in the distribution of orbital period ratios. A large number of planet pairs are found near the exact location of mean motion resonances (MMRs). In this wo
Recent studies claimed that planets around the same star have similar sizes and masses and regular spacings, and that planet pairs usually show ordered sizes such that the outer planet is usually the larger one. Here I show that these patterns can be