ﻻ يوجد ملخص باللغة العربية
Over the past decade, Citizen Science has become a proven method of distributed data analysis, enabling research teams from diverse domains to solve problems involving large quantities of data with complexity levels which require human pattern recognition capabilities. With over 120 projects built reaching nearly 1.7 million volunteers, the Zooniverse.org platform has led the way in the application of Citizen Science as a method for closing the Big Data analysis gap. Since the launch in 2007 of the Galaxy Zoo project, the Zooniverse platform has enabled significant contributions across many disciplines; e.g., in ecology, humanities, and astronomy. Citizen science as an approach to Big Data combines the twin advantages of the ability to scale analysis to the size of modern datasets with the ability of humans to make serendipitous discoveries. To cope with the larger datasets looming on the horizon such as astronomys Large Synoptic Survey Telescope (LSST) or the 100s of TB from ecology projects annually, Zooniverse has been researching a system design that is optimized for efficiency in task assignment and incorporating human and machine classifiers into the classification engine. By making efficient use of smart task assignment and the combination of human and machine classifiers, we can achieve greater accuracy and flexibility than has been possible to date. We note that creating the most efficient system must consider how best to engage and retain volunteers as well as make the most efficient use of their classifications. Our work thus focuses on understanding the factors that optimize efficiency of the combined human-machine system. This paper summarizes some of our research to date on integration of machine learning with Zooniverse, while also describing new infrastructure developed on the Zooniverse platform to carry out this research.
When crowdsourcing systems are used in combination with machine inference systems in the real world, they benefit the most when the machine system is deeply integrated with the crowd workers. However, if researchers wish to integrate the crowd with o
We propose incorporating human labelers in a model fine-tuning system that provides immediate user feedback. In our framework, human labelers can interactively query model predictions on unlabeled data, choose which data to label, and see the resulti
There is a growing desire to create computer systems that can communicate effectively to collaborate with humans on complex, open-ended activities. Assessing these systems presents significant challenges. We describe a framework for evaluating system
Surface electromyography (sEMG) is a non-invasive method of measuring neuromuscular potentials generated when the brain instructs the body to perform both fine and coarse locomotion. This technique has seen extensive investigation over the last two d
Although cancer patients survive years after oncologic therapy, they are plagued with long-lasting or permanent residual symptoms, whose severity, rate of development, and resolution after treatment vary largely between survivors. The analysis and in