ترغب بنشر مسار تعليمي؟ اضغط هنا

Development of spatial suppression surrounding the focus of visual attention

47   0   0.0 ( 0 )
 نشر من قبل Audrey Wong-Kee-You MA
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

The capacity to filter out irrelevant information from our environment is critical to efficient processing. Yet, during development, when building a knowledge base of the world is occurring, the ability to selectively allocate attentional resources is limited (e.g., Amso & Scerif, 2015). In adulthood, research has demonstrated that surrounding the spatial location of attentional focus is a suppressive field, resulting from top-down attention promoting the processing of relevant stimuli and inhibiting surrounding distractors (e.g., Hopf et al., 2006). It is not fully known, however, whether this phenomenon manifests in development. In the current study, we examined whether spatial suppression surrounding the focus of visual attention is exhibited in developmental age groups. Participants between 12 and 27 years of age exhibited spatial suppression surrounding their focus of visual attention. Their accuracy increased as a function of the separation distance between a spatially cued (and attended) target and a second target, suggesting that a ring of suppression surrounded the attended target. When a central cue was instead presented and therefore attention was no longer spatially cued, surround suppression was not observed, indicating that our initial findings of suppression were indeed related to the focus of attention. Attentional surround suppression was not observed in 8- to 11-years-olds, even with a longer spatial cue presentation time, demonstrating that the lack of the effect at these ages is not due to slowed attentional feedback processes. Our findings demonstrate that top-down attentional processes are still immature until approximately 12 years of age, and that they continue to be refined throughout adolescence, converging well with previous research on attentional development.


قيم البحث

اقرأ أيضاً

Fast reactions to changes in the surrounding visual environment require efficient attention mechanisms to reallocate computational resources to most relevant locations in the visual field. While current computational models keep improving their predi ctive ability thanks to the increasing availability of data, they still struggle approximating the effectiveness and efficiency exhibited by foveated animals. In this paper, we present a biologically-plausible computational model of focus of attention that exhibits spatiotemporal locality and that is very well-suited for parallel and distributed implementations. Attention emerges as a wave propagation process originated by visual stimuli corresponding to details and motion information. The resulting field obeys the principle of inhibition of return so as not to get stuck in potential holes. An accurate experimentation of the model shows that it achieves top level performance in scanpath prediction tasks. This can easily be understood at the light of a theoretical result that we establish in the paper, where we prove that as the velocity of wave propagation goes to infinity, the proposed model reduces to recently proposed state of the art gravitational models of focus of attention.
Primary visual cortex (V1) is the first stage of cortical image processing, and a major effort in systems neuroscience is devoted to understanding how it encodes information about visual stimuli. Within V1, many neurons respond selectively to edges o f a given preferred orientation: these are known as simple or complex cells, and they are well-studied. Other neurons respond to localized center-surround image features. Still others respond selectively to certain image stimuli, but the specific features that excite them are unknown. Moreover, even for the simple and complex cells-- the best-understood V1 neurons-- it is challenging to predict how they will respond to natural image stimuli. Thus, there are important gaps in our understanding of how V1 encodes images. To fill this gap, we train deep convolutional neural networks to predict the firing rates of V1 neurons in response to natural image stimuli, and find that 15% of these neurons are within 10% of their theoretical limit of predictability. For these well predicted neurons, we invert the predictor network to identify the image features (receptive fields) that cause the V1 neurons to spike. In addition to those with previously-characterized receptive fields (Gabor wavelet and center-surround), we identify neurons that respond predictably to higher-level textural image features that are not localized to any particular region of the image.
Simulating and imitating the neuronal network of humans or mammals is a popular topic that has been explored for many years in the fields of pattern recognition and computer vision. Inspired by neuronal conduction characteristics in the primary visua l cortex of cats, pulse-coupled neural networks (PCNNs) can exhibit synchronous oscillation behavior, which can process digital images without training. However, according to the study of single cells in the cat primary visual cortex, when a neuron is stimulated by an external periodic signal, the interspike-interval (ISI) distributions represent a multimodal distribution. This phenomenon cannot be explained by all PCNN models. By analyzing the working mechanism of the PCNN, we present a novel neuron model of the primary visual cortex consisting of a continuous-coupled neural network (CCNN). Our model inherited the threshold exponential decay and synchronous pulse oscillation property of the original PCNN model, and it can exhibit chaotic behavior consistent with the testing results of cat primary visual cortex neurons. Therefore, our CCNN model is closer to real visual neural networks. For image segmentation tasks, the algorithm based on CCNN model has better performance than the state-of-art of visual cortex neural network model. The strength of our approach is that it helps neurophysiologists further understand how the primary visual cortex works and can be used to quantitatively predict the temporal-spatial behavior of real neural networks. CCNN may also inspire engineers to create brain-inspired deep learning networks for artificial intelligence purposes.
We present a method to stop the evaluation of a prediction process when the result of the full evaluation is obvious. This trait is highly desirable in prediction tasks where a predictor evaluates all its features for every example in large datasets. We observe that some examples are easier to classify than others, a phenomenon which is characterized by the event when most of the features agree on the class of an example. By stopping the feature evaluation when encountering an easy- to-classify example, the predictor can achieve substantial gains in computation. Our method provides a natural attention mechanism for linear predictors where the predictor concentrates most of its computation on hard-to-classify examples and quickly discards easy-to-classify ones. By modifying a linear prediction algorithm such as an SVM or AdaBoost to include our attentive method we prove that the average number of features computed is O(sqrt(n log 1/sqrt(delta))) where n is the original number of features, and delta is the error rate incurred due to early stopping. We demonstrate the effectiveness of Attentive Prediction on MNIST, Real-sim, Gisette, and synthetic datasets.
Higher socioeconomic status (SES) in childhood is associated with increased cognitive abilities, higher academic achievement, and decreased incidence of mental illness later in development. Accumulating evidence suggests that these effects may be due to changes in brain development induced by environmental factors. While prior work has mapped the associations between neighborhood SES and brain structure, little is known about the relationship between SES and intrinsic neural dynamics. Here, we capitalize upon a large community-based sample (Philadelphia Neurodevelopmental Cohort, ages 8-22 years, n=1012) to examine developmental changes in functional brain network topology as estimated from resting state functional magnetic resonance imaging data. We quantitatively characterize this topology using a local measure of network segregation known as the clustering coefficient, and find that it accounts for a greater degree of SES-associated variance than meso-scale segregation captured by modularity. While whole-brain clustering increased with age, high-SES youth displayed faster increases in clustering than low-SES youth, and this effect was most pronounced for regions in the limbic, somatomotor, and ventral attention systems. The effect of SES on developmental increases in clustering was strongest for connections of intermediate physical length, consistent with faster decreases in local connectivity in these regions in low-SES youth, and tracked changes in BOLD signal complexity in the form of regional homogeneity. Our findings suggest that neighborhood SES may fundamentally alter intrinsic patterns of inter-regional interactions in the human brain in a manner that is consistent with greater segregation of information processing in late childhood and adolescence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا