ترغب بنشر مسار تعليمي؟ اضغط هنا

The photon-ion merged-beams experiment PIPE at PETRAIII - The first five years

118   0   0.0 ( 0 )
 نشر من قبل Stefan Schippers
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Photon-Ion Spectrometer at PETRA III - in short, PIPE - is a permanently installed user facility at the Variable Polarization XUV Beamline P04 of the synchrotron light source PETRA III operated by DESY in Hamburg, Germany. The careful design of the PIPE ion-optics in combination with the record-high photon flux at P04 has lead to a breakthrough in experimental studies of photon interactions with ionized small quantum systems. This short review provides an overview over the published scientific results from photon-ion merged-beams experiments at PIPE that were obtained since the start of P04 operations in 2013. The topics covered comprise photoionization of ions of astrophysical relevance, quantitative studies of multi-electron processes upon inner-shell photoexcitation and photoionization of negative and positive atomic ions, precision spectroscopy of photoionization resonances, photoionization and photofragmentation of molecular ions and of endohedral fullerene ions.



قيم البحث

اقرأ أيضاً

We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory, with 1-mm beam spot size within 2.5 ns full-width at half maximum. The ion kineti c energy is 1.2 MeV. To enable the short pulse duration and mm-scale focal spot radius, the beam is neutralized in a 1.5-meter-long drift compression section following the last accelerator cell. A short-focal-length solenoid focuses the beam in the presence of the volumetric plasma that is near the target. In the accelerator, the line-charge density increases due to the velocity ramp imparted on the beam bunch. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including select topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Below the transition to melting, the short beam pulses offer an opportunity to study the multi-scale dynamics of radiation-induced damage in materials with pump-probe experiments, and to stabilize novel metastable phases of materials when short-pulse heating is followed by rapid quenching. First experiments used a lithium ion source; a new plasma-based helium ion source shows much greater charge delivered to the target.
83 - Vik Singh , Jim Gray , Ani Thakar 2007
The SkyServer is an Internet portal to the Sloan Digital Sky Survey Catalog Archive Server. From 2001 to 2006, there were a million visitors in 3 million sessions generating 170 million Web hits, 16 million ad-hoc SQL queries, and 62 million page vie ws. The site currently averages 35 thousand visitors and 400 thousand sessions per month. The Web and SQL logs are public. We analyzed traffic and sessions by duration, usage pattern, data product, and client type (mortal or bot) over time. The analysis shows (1) the sites popularity, (2) the educational website that delivered nearly fifty thousand hours of interactive instruction, (3) the relative use of interactive, programmatic, and batch-local access, (4) the success of offering ad-hoc SQL, personal database, and batch job access to scientists as part of the data publication, (5) the continuing interest in old datasets, (6) the usage of SQL constructs, and (7) a novel approach of using the corpus of correct SQL queries to suggest similar but correct statements when a user presents an incorrect SQL statement.
123 - Salvatore Vitale 2020
Gravitational waves are ripples in spacetime generated by the acceleration of astrophysical objects. A direct consequence of general relativity, they were first directly observed in 2015 by the twin Laser Interferometer Gravitational-Wave Observatory (LIGO) observatories. I review the first five years of gravitational wave detections. More than fifty gravitational waves events have been found, emitted by pairs of merging compact objects such as neutron stars and black holes. These signals yield insights into the formation of compact objects and their progenitor stars, enable stringent tests of general relativity and constrain the behavior of matter at densities higher than an atomic nucleus. Mergers that emit both gravitational and electromagnetic waves probe the formation of short gamma ray bursts, the nucleosynthesis of heavy elements, and measure the local expansion rate of the Universe.
Measurements of the single photoionization cross section of Cu-like Zn$^+$ ions are reported in the energy (wavelength) range 17.5 eV (709 AA) to 90 eV (138 AA). The measurements on this {it trans}-Fe element were performed at the Advanced Light Sour ce synchrotron radiation facility in Berkeley, California at a photon energy resolution of 17 meV using the photon-ion merged-beams end-station. Below 30 eV the spectrum is dominated by excitation autoionizing resonance states. The experimental results are compared with large-scale photoionization cross-section calculations performed using a Dirac-Coulomb $R$-matrix approximation. Comparison are made with previous experimental studies, resonance states are identified and contributions from metastable states of Zn$^+$ determined.
We review recent work on the photoionization of atomic ions of astrophysical interest that has been carried out at the photon-ion merged-beams setup PIPE, a permanently installed end station at the XUV beamline P04 of the PETRAIII synchrotron radiati on source operated by DESY in Hamburg, Germany. Our results on single and multiple L-shell photoionization of Fe+, Fe2+, and Fe3+ ions and on single and multiple K-shell photoionization of C-, C+, C4+, Ne+, and Si2+ ions are discussed in astrophysical contexts. Moreover, these experimental results bear witness of the fact, that the implementation of the photon-ion merged-beams method at one of the worlds brightest synchrotron light sources has led to a breakthrough for the experimental study of atomic inner-shell photoionization processes with ions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا