ﻻ يوجد ملخص باللغة العربية
A system of linearly coupled quantum harmonic oscillators can be diagonalized when the system is dynamically stable using a Bogoliubov canonical transformation. However, this is just a particular case of more general canonical transformations that can be performed even when the system is dynamically unstable. Specific canonical transformations can transform a quadratic Hamiltonian into a normal form, which greatly helps to elucidate the underlying physics of the system. Here, we provide a self-contained review of the normal form of a quadratic Hamiltonian as well as step-by-step instructions to construct the corresponding canonical transformation for the most general case. Among other examples, we show how the standard two-mode Hamiltonian with a quadratic position coupling presents, in the stability diagram, all the possible normal forms corresponding to different types of dynamical instabilities.
We consider normal forms in `magnetic bottle type Hamiltonians of the form $H=frac{1}{2}(rho^2_rho+omega^2_1rho^2) +frac{1}{2}p^2_z+hot$ (second frequency $omega_2$ equal to zero in the lowest order). Our main results are: i) a novel method to constr
Many-body fermionic quantum calculations performed on analog quantum computers are restricted by the presence of k-local terms, which represent interactions among more than two qubits. These originate from the fermion-to-qubit mapping applied to the
In this work we show how to engineer bilinear and quadratic Hamiltonians in cavity quantum electrodynamics (QED) through the interaction of a single driven two-level atom with cavity modes. The validity of the engineered Hamiltonians is numerically a
The main challenges in achieving high-fidelity quantum gates are to reduce the influence of control errors caused by imperfect Hamiltonians and the influence of decoherence caused by environment noise. To overcome control errors, a promising proposal
We study dynamical systems which admit action-angle variables at leading order which are subject to nearly resonant perturbations. If the frequencies characterizing the unperturbed system are not in resonance, the long-term dynamical evolution may be