ﻻ يوجد ملخص باللغة العربية
We construct an analytical theory of interplay between synchronizing effects by common noise and by global coupling for a general class of smooth limit-cycle oscillators. Both the cases of attractive and repulsive coupling are considered. The derivation is performed within the framework of the phase reduction, which fully accounts for the amplitude degrees of freedom. Firstly, we consider the case of identical oscillators subject to intrinsic noise, obtain the synchronization condition, and find that the distribution of phase deviations always possesses lower-law heavy tails. Secondly, we consider the case of nonidentical oscillators. For the average oscillator frequency as a function of the natural frequency mismatch, limiting scaling laws are derived; these laws exhibit the nontrivial phenomenon of frequency repulsion accompanying synchronization under negative coupling. The analytical theory is illustrated with examples of Van der Pol and Van der Pol--Duffing oscillators and the neuron-like FitzHugh--Nagumo system; the results are also underpinned by the direct numerical simulation for ensembles of these oscillators.
Driven by various kinds of noise, ensembles of limit cycle oscillators can synchronize. In this letter, we propose a general formulation of synchronization of the oscillator ensembles driven by common colored noise with an arbitrary power spectrum. T
The mechanism of phase synchronization between uncoupled limit-cycle oscillators induced by common external impulsive forcing is analyzed. By reducing the dynamics of the oscillator to a random phase map, it is shown that phase synchronization genera
We consider the inertial Kuramoto model of $N$ globally coupled oscillators characterized by both their phase and angular velocity, in which there is a time delay in the interaction between the oscillators. Besides the academic interest, we show that
Weakly coupled limit cycle oscillators can be reduced into a phase model using phase reduction approach, and the phase model itself is helpful to analyze a synchronization. For example, phase model of two oscillators is one-dimensional differential e
The controllability of synchronization is an intriguing question in complex systems, in which hiearchically-organized heterogeneous elements have asymmetric and activity-dependent couplings. In this study, we introduce a simple and effective way to c