ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong and Weak Equilibria for Time-Inconsistent Stochastic Control in Continuous Time

84   0   0.0 ( 0 )
 نشر من قبل Yu-Jui Huang
 تاريخ النشر 2018
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

A new definition of continuous-time equilibrium controls is introduced. As opposed to the standard definition, which involves a derivative-type operation, the new definition parallels how a discrete-time equilibrium is defined, and allows for unambiguous economic interpretation. The terms strong equilibria and weak equilibria are coined for controls under the new and the standard definitions, respectively. When the state process is a time-homogeneous continuous-time Markov chain, a careful asymptotic analysis gives complete characterizations of weak and strong equilibria. Thanks to Kakutani-Fans fixed-point theorem, general existence of weak and strong equilibria is also established, under additional compactness assumption. Our theoretic results are applied to a two-state model under non-exponential discounting. In particular, we demonstrate explicitly that there can be incentive to deviate from a weak equilibrium, which justifies the need for strong equilibria. Our analysis also provides new results for the existence and characterization of discrete-time equilibria under infinite horizon.



قيم البحث

اقرأ أيضاً

136 - Zongxia Liang , Fengyi Yuan 2021
This paper considers time-inconsistent problems when control and stopping strategies are required to be made simultaneously (called stopping control problems by us). We first formulate the time-inconsistent stopping control problems under general mul ti-dimensional controlled diffusion model and propose a formal definition of their equilibriums. We show that an admissible pair $(hat{u},C)$ of control-stopping policy is equilibrium if and only if the axillary function associated to it solves the extended HJB system. We provide almost equivalent conditions to the boundary term of this extended HJB system, which is related to the celebrated smooth fitting principles. As applications of our theoretical results, we develop an investment-withdrawal decision model for time-inconsistent decision makers in infinite time horizon. We provide two concrete examples, one of which includes constant proportion investment with one side threshold withdrawal strategy as equilibrium; in another example, all strategies with constant proportion investment are proved to be irrational, no matter what the withdrawal strategy is.
75 - Yu-Jui Huang , Zhou Zhou 2021
This paper studies a nonzero-sum Dynkin game in discrete time under non-exponential discounting. For both players, there are two levels of game-theoretic reasoning intertwined. First, each player looks for an intra-personal equilibrium among her curr ent and future selves, so as to resolve time inconsistency triggered by non-exponential discounting. Next, given the other players chosen stopping policy, each player selects a best response among her intra-personal equilibria. A resulting inter-personal equilibrium is then a Nash equilibrium between the two players, each of whom employs her best intra-personal equilibrium with respect to the other players stopping policy. Under appropriate conditions, we show that an inter-personal equilibrium exists, based on concrete iterative procedures along with Zorns lemma. To illustrate our theoretic results, we investigate a two-player real options valuation problem: two firms negotiate a deal of cooperation to initiate a project jointly. By deriving inter-personal equilibria explicitly, we find that coercive power in negotiation depends crucially on the impatience levels of the two firms.
In this paper we study a class of time-inconsistent terminal Markovian control problems in discrete time subject to model uncertainty. We combine the concept of the sub-game perfect strategies with the adaptive robust stochastic to tackle the theoret ical aspects of the considered stochastic control problem. Consequently, as an important application of the theoretical results, by applying a machine learning algorithm we solve numerically the mean-variance portfolio selection problem under the model uncertainty.
Optimized certainty equivalents (OCEs) is a family of risk measures widely used by both practitioners and academics. This is mostly due to its tractability and the fact that it encompasses important examples, including entropic risk measures and aver age value at risk. In this work we consider stochastic optimal control problems where the objective criterion is given by an OCE risk measure, or put in other words, a risk minimization problem for controlled diffusions. A major difficulty arises since OCEs are often time inconsistent. Nevertheless, via an enlargement of state space we achieve a substitute of sorts for time consistency in fair generality. This allows us to derive a dynamic programming principle and thus recover central results of (risk-neutral) stochastic control theory. In particular, we show that the value of our risk minimization problem can be characterized via the viscosity solution of a Hamilton--Jacobi--Bellman--Issacs equation. We further establish the uniqueness of the latter under suitable technical conditions.
We study existence and uniqueness of continuous-time stochastic Radner equilibria in an incomplete market model among a group of agents whose preference is characterized by cash invariant time-consistent monetary utilities. An assumption of smallness type is shown to be sufficient for existence and uniqueness. In particular, this assumption encapsulates settings with small endowments, small time-horizon, or a large population of weakly heterogeneous agents. Central role in our analysis is played by a fully-coupled nonlinear system of quadratic BSDEs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا