ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarization Whorls from M87* at the Event Horizon Telescope

259   0   0.0 ( 0 )
 نشر من قبل Alexandru Lupsasca
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Event Horizon Telescope (EHT) is expected to soon produce polarimetric images of the supermassive black hole at the center of the neighboring galaxy M87. There are indications that this black hole is rapidly spinning. General relativity predicts that such a high-spin black hole has an emergent conformal symmetry near its event horizon. In this paper, we use this symmetry to analytically predict the polarized near-horizon emissions to be seen at the EHT and find a distinctive pattern of whorls aligned with the spin.



قيم البحث

اقرأ أيضاً

The Event Horizon Telescope (EHT) has mapped the central compact radio source of the elliptical galaxy M87 at 1.3 mm with unprecedented angular resolution. Here we consider the physical implications of the asymmetric ring seen in the 2017 EHT data. T o this end, we construct a large library of models based on general relativistic magnetohydrodynamic (GRMHD) simulations and synthetic images produced by general relativistic ray tracing. We compare the observed visibilities with this library and confirm that the asymmetric ring is consistent with earlier predictions of strong gravitational lensing of synchrotron emission from a hot plasma orbiting near the black hole event horizon. The ring radius and ring asymmetry depend on black hole mass and spin, respectively, and both are therefore expected to be stable when observed in future EHT campaigns. Overall, the observed image is consistent with expectations for the shadow of a spinning Kerr black hole as predicted by general relativity. If the black hole spin and M87s large scale jet are aligned, then the black hole spin vector is pointed away from Earth. Models in our library of non-spinning black holes are inconsistent with the observations as they do not produce sufficiently powerful jets. At the same time, in those models that produce a sufficiently powerful jet, the latter is powered by extraction of black hole spin energy through mechanisms akin to the Blandford-Znajek process. We briefly consider alternatives to a black hole for the central compact object. Analysis of existing EHT polarization data and data taken simultaneously at other wavelengths will soon enable new tests of the GRMHD models, as will future EHT campaigns at 230 and 345 GHz.
When surrounded by a transparent emission region, black holes are expected to reveal a dark shadow caused by gravitational light bending and photon capture at the event horizon. To image and study this phenomenon, we have assembled the Event Horizon Telescope, a global very long baseline interferometry array observing at a wavelength of 1.3 mm. This allows us to reconstruct event-horizon-scale images of the supermassive black hole candidate in the center of the giant elliptical galaxy M87. We have resolved the central compact radio source as an asymmetric bright emission ring with a diameter of 42+/-3 micro-as, which is circular and encompasses a central depression in brightness with a flux ratio ~10:1. The emission ring is recovered using different calibration and imaging schemes, with its diameter and width remaining stable over four different observations carried out in different days. Overall, the observed image is consistent with expectations for the shadow of a Kerr black hole as predicted by general relativity. The asymmetry in brightness in the ring can be explained in terms of relativistic beaming of the emission from a plasma rotating close to the speed of light around a black hole. We compare our images to an extensive library of ray-traced general-relativistic magnetohydrodynamic simulations of black holes and derive a central mass of M = (6.5+/-0.7) x 10^9 Msun. Our radio-wave observations thus provide powerful evidence for the presence of supermassive black holes in centers of galaxies and as the central engines of active galactic nuclei. They also present a new tool to explore gravity in its most extreme limit and on a mass scale that was so far not accessible.
We present measurements of the properties of the central radio source in M87 using Event Horizon Telescope data obtained during the 2017 campaign. We develop and fit geometric crescent models (asymmetric rings with interior brightness depressions) us ing two independent sampling algorithms that consider distinct representations of the visibility data. We show that the crescent family of models is statistically preferred over other comparably complex geometric models that we explore. We calibrate the geometric model parameters using general relativistic magnetohydrodynamic (GRMHD) models of the emission region and estimate physical properties of the source. We further fit images generated from GRMHD models directly to the data. We compare the derived emission region and black hole parameters from these analyses with those recovered from reconstructed images. There is a remarkable consistency among all methods and data sets. We find that >50% of the total flux at arcsecond scales comes from near the horizon, and that the emission is dramatically suppressed interior to this region by a factor >10, providing direct evidence of the predicted shadow of a black hole. Across all methods, we measure a crescent diameter of 42+/-3 micro-as and constrain its fractional width to be <0.5. Associating the crescent feature with the emission surrounding the black hole shadow, we infer an angular gravitational radius of GM/Dc2 = 3.8+/- 0.4 micro-as. Folding in a distance measurement of 16.8(+0.8,-0.7) Mpc gives a black hole mass of M = 6.5 +/- 0.2(stat) +/-0.7(sys) 10^9 Msun. This measurement from lensed emission near the event horizon is consistent with the presence of a central Kerr black hole, as predicted by the general theory of relativity.
The Event Horizon Telescope (EHT) with unprecedented angular resolution opens exciting opportunities to search for new physics beyond the particle Standard Model. Recently, the polarization properties of the radiation near the supermassive black hole M87$^star$ are measured in four individual days. This is exactly what is needed to test the existence of a dense axion cloud produced from extracting the black hole spinning energy by the superradiance mechanism. The presence of the axion cloud leads to a frequency independent oscillation to the electric vector position angle (EVPA) of the linearly polarized radiation. For M87$^star$, which is approximately face-on, such an oscillation of the EVPA appears as a propagating wave along the azimuthal angle on the sky. In this paper, we apply the azimuthal distribution of EVPA measured by the EHT and study the axion-photon coupling. We propose a novel differential analysis procedure to minimize the astrophysical background and derive stringent constraints on the axion parameters. The EHT data can rule out a considerable portion of the axion parameter space for axion mass window $sim (10^{-21}-10^{-20})$~eV, which was unexplored by previous experiments.
We present the calibration and reduction of Event Horizon Telescope (EHT) 1.3mm radio wavelength observations of the supermassive black hole candidate at the center of the radio galaxy M87 and the quasar 3C 279, taken during the 2017 April 5-11 obser ving campaign. These global very long baseline interferometric observations include for the first time the highly sensitive Atacama Large Millimeter/submillimeter Array (ALMA); reaching an angular resolution of 25 micro-as, with characteristic sensitivity limits of ~1 mJy on baselines to ALMA and ~10 mJy on other baselines. The observations present challenges for existing data processing tools, arising from the rapid atmospheric phase fluctuations, wide recording bandwidth, and highly heterogeneous array. In response, we developed three independent pipelines for phase calibration and fringe detection, each tailored to the specific needs of the EHT. The final data products include calibrated total intensity amplitude and phase information. They are validated through a series of quality assurance tests that show consistency across pipelines and set limits on baseline systematic errors of 2% in amplitude and 1 degree in phase. The M87 data reveal the presence of two nulls in correlated flux density at ~3.4 and ~8.3 giga-lambda and temporal evolution in closure quantities, indicating intrinsic variability of compact structure on a timescale of days, or several light-crossing times for a few billion solar-mass black hole. These measurements provide the first opportunity to image horizon-scale structure in M87.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا