ﻻ يوجد ملخص باللغة العربية
Using first-principles density-functional theory calculations, we obtain the non-coplanar nodal loop for a single-component molecular conductor [Pd(dddt)$_2$] consisting of HOMO and LUMO with different parity. Focusing on two typical Dirac points, we present a model of an effective 2 $times$ 2 matrix Hamiltonian in terms of two kinds of velocities associated with the nodal line. The base of the model is taken as HOMO and LUMO on each Dirac point, where two band energies degenerate and the off diagonal matrix element vanishes. The present model, which reasonably describes the Dirac cone in accordance with the first-principles calculation, provides a new method of analyzing electronic states of a topological nodal line semimetal.
We examine an effect of acoustic phonon scattering on an electric conductivity of single-component molecular conductor [Pd(dddt)$_2$] (dddt = 5,6-dihydro-1,4-dithiin-2,3-dithiolate) with a half-filled band by applying the previous calculation in a tw
We examined high-pressure electronic structure of a single-component molecular conductor [Pd(dddt)$_2$] (dddt = 5,6-dihydro-1,4-dithiin-2,3-dithiolate) at room temperature, based on the crystal structure determined by single crystal synchrotron X-ray
We instigate the angle-dependent magnetoresistance (AMR) of the layered nodal-line Dirac semimetal ZrSiS for the in-plane and out-of-plane current directions. This material has recently revealed an intriguing butterfly-shaped in-plane AMR that is not
The optical properties of YbMnSb2 have been measured in a broad frequency range from room temperature down to 7 K. With decreasing temperature, a flat region develops in the optical conductivity spectra at about 300cm-1, which can not be described by
Topological nodal-line semimetals support protected band crossings which form nodal lines or nodal loops between the valence and conduction bands and exhibit novel transport phenomena. Here we address the topological state of the nodal-line semimetal