ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning to Localize and Align Fine-Grained Actions to Sparse Instructions

76   0   0.0 ( 0 )
 نشر من قبل Meera Hahn
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Automatic generation of textual video descriptions that are time-aligned with video content is a long-standing goal in computer vision. The task is challenging due to the difficulty of bridging the semantic gap between the visual and natural language domains. This paper addresses the task of automatically generating an alignment between a set of instructions and a first person video demonstrating an activity. The sparse descriptions and ambiguity of written instructions create significant alignment challenges. The key to our approach is the use of egocentric cues to generate a concise set of action proposals, which are then matched to recipe steps using object recognition and computational linguistic techniques. We obtain promising results on both the Extended GTEA Gaze+ dataset and the Bristol Egocentric Object Interactions Dataset.

قيم البحث

اقرأ أيضاً

With the knowledge of action moments (i.e., trimmed video clips that each contains an action instance), humans could routinely localize an action temporally in an untrimmed video. Nevertheless, most practical methods still require all training videos to be labeled with temporal annotations (action category and temporal boundary) and develop the models in a fully-supervised manner, despite expensive labeling efforts and inapplicable to new categories. In this paper, we introduce a new design of transfer learning type to learn action localization for a large set of action categories, but only on action moments from the categories of interest and temporal annotations of untrimmed videos from a small set of action classes. Specifically, we present Action Herald Networks (AherNet) that integrate such design into an one-stage action localization framework. Technically, a weight transfer function is uniquely devised to build the transformation between classification of action moments or foreground video segments and action localization in synthetic contextual moments or untrimmed videos. The context of each moment is learnt through the adversarial mechanism to differentiate the generated features from those of background in untrimmed videos. Extensive experiments are conducted on the learning both across the splits of ActivityNet v1.3 and from THUMOS14 to ActivityNet v1.3. Our AherNet demonstrates the superiority even comparing to most fully-supervised action localization methods. More remarkably, we train AherNet to localize actions from 600 categories on the leverage of action moments in Kinetics-600 and temporal annotations from 200 classes in ActivityNet v1.3. Source code and data are available at url{https://github.com/FuchenUSTC/AherNet}.
237 - Aojun Zhou , Yukun Ma , Junnan Zhu 2021
Sparsity in Deep Neural Networks (DNNs) has been widely studied to compress and accelerate the models on resource-constrained environments. It can be generally categorized into unstructured fine-grained sparsity that zeroes out multiple individual we ights distributed across the neural network, and structured coarse-grained sparsity which prunes blocks of sub-networks of a neural network. Fine-grained sparsity can achieve a high compression ratio but is not hardware friendly and hence receives limited speed gains. On the other hand, coarse-grained sparsity cannot concurrently achieve both apparent acceleration on modern GPUs and decent performance. In this paper, we are the first to study training from scratch an N:M fine-grained structured sparse network, which can maintain the advantages of both unstructured fine-grained sparsity and structured coarse-grained sparsity simultaneously on specifically designed GPUs. Specifically, a 2:4 sparse network could achieve 2x speed-up without performance drop on Nvidia A100 GPUs. Furthermore, we propose a novel and effective ingredient, sparse-refined straight-through estimator (SR-STE), to alleviate the negative influence of the approximated gradients computed by vanilla STE during optimization. We also define a metric, Sparse Architecture Divergence (SAD), to measure the sparse networks topology change during the training process. Finally, We justify SR-STEs advantages with SAD and demonstrate the effectiveness of SR-STE by performing comprehensive experiments on various tasks. Source codes and models are available at https://github.com/NM-sparsity/NM-sparsity.
One of the main difficulties of scaling current localization systems to large environments is the on-board storage required for the maps. In this paper we propose to learn to compress the map representation such that it is optimal for the localizatio n task. As a consequence, higher compression rates can be achieved without loss of localization accuracy when compared to standard coding schemes that optimize for reconstruction, thus ignoring the end task. Our experiments show that it is possible to learn a task-specific compression which reduces storage requirements by two orders of magnitude over general-purpose codecs such as WebP without sacrificing performance.
96 - Di Wu , Siyuan Li , Zelin Zang 2021
Self-supervised contrastive learning has demonstrated great potential in learning visual representations. Despite their success on various downstream tasks such as image classification and object detection, self-supervised pre-training for fine-grain ed scenarios is not fully explored. In this paper, we first point out that current contrastive methods are prone to memorizing background/foreground texture and therefore have a limitation in localizing the foreground object. Analysis suggests that learning to extract discriminative texture information and localization are equally crucial for self-supervised pre-training under fine-grained scenarios. Based on our findings, we introduce Cross-view Saliency Alignment (CVSA), a contrastive learning framework that first crops and swaps saliency regions of images as a novel view generation and then guides the model to localize on the foreground object via a cross-view alignment loss. Extensive experiments on four popular fine-grained classification benchmarks show that CVSA significantly improves the learned representation.
Affective computing and cognitive theory are widely used in modern human-computer interaction scenarios. Human faces, as the most prominent and easily accessible features, have attracted great attention from researchers. Since humans have rich emotio ns and developed musculature, there exist a lot of fine-grained expressions in real-world applications. However, it is extremely time-consuming to collect and annotate a large number of facial images, of which may even require psychologists to correctly categorize them. To the best of our knowledge, the existing expression datasets are only limited to several basic facial expressions, which are not sufficient to support our ambitions in developing successful human-computer interaction systems. To this end, a novel Fine-grained Facial Expression Database - F2ED is contributed in this paper, and it includes more than 200k images with 54 facial expressions from 119 persons. Considering the phenomenon of uneven data distribution and lack of samples is common in real-world scenarios, we further evaluate several tasks of few-shot expression learning by virtue of our F2ED, which are to recognize the facial expressions given only few training instances. These tasks mimic human performance to learn robust and general representation from few examples. To address such few-shot tasks, we propose a unified task-driven framework - Compositional Generative Adversarial Network (Comp-GAN) learning to synthesize facial images and thus augmenting the instances of few-shot expression classes. Extensive experiments are conducted on F2ED and existing facial expression datasets, i.e., JAFFE and FER2013, to validate the efficacy of our F2ED in pre-training facial expression recognition network and the effectiveness of our proposed approach Comp-GAN to improve the performance of few-shot recognition tasks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا