ﻻ يوجد ملخص باللغة العربية
We experimentally demonstrate ultralong spin lifetimes of electrons in the one-dimensional (1D) quantum limit of semiconductor nanowires. Optically probing single wires of different diameters reveals an increase in the spin relaxation time by orders of magnitude as the electrons become increasingly confined until only a single 1D subband is populated. We find the observed spin lifetimes of more than $200,textrm{ns}$ to result from the robustness of 1D electrons against major spin relaxation mechanisms, highlighting the promising potential of these wires for long-range transport of coherent spin information.
The excitation gap above the Majorana fermion (MF) modes at the ends of 1D topological superconducting (TS) semiconductor wires scales with the bulk quasiparticle gap E_{qp}. This gap, also called minigap, facilitates experimental detection of the pr
We use $vec{k}cdotvec{p}$ theory to estimate the Rashba spin-orbit coupling (SOC) in large semiconductor nanowires. We specifically investigate GaAs- and InSb-based devices with different gate configurations to control symmetry and localization of th
For the realisation of scalable solid-state quantum-bit systems, spins in semiconductor quantum dots are promising candidates. A key requirement for quantum logic operations is a sufficiently long coherence time of the spin system. Recently, hole spi
GaAs was central to the development of quantum devices but is rarely used for nanowire-based quantum devices with InAs, InSb and SiGe instead taking the leading role. p-type GaAs nanowires offer a path to studying strongly-confined 0D and 1D hole sys
Since their first experimental observation, ultralong-range Rydberg molecules consisting of a highly excited Rydberg atom and a ground state atom have attracted the interest in the field of ultracold chemistry. Especially the intriguing properties li