ﻻ يوجد ملخص باللغة العربية
The discovery of FeO$_{2}$ containing more oxygen than hematite (Fe$_{2}$O$_{3}$) that was previously believed to be the most oxygen rich iron compounds, has important implications on the study of the deep lower mantle compositions. Compared to other iron compounds, there are limited reports on FeO$_{2}$ making studies of its physical properties of great interest in fundamental condensed matter physics and geoscience. Even the oxidation state of Fe in FeO$_{2}$ is the subject of debate in theoretical works and there have not been reports from experimental electronic and magnetic properties measurements. Here, we report the pressure-induced spin state transition from synchrotron experiments and our computational results explain the underlying mechanism. Using density functional theory and dynamical mean field theory, we calculated spin states of Fe with volume and Hubbard interaction $U$ change, which clearly demonstrate that Fe in FeO$_{2}$ consists of Fe(II) and peroxide O$_{2}^{2-}$. Our study suggests that localized nature of both Fe 3$d$ orbitals and O$_{2}$ molecular orbitals should be correctly treated for unveiling the structural and electronic properties of FeO$_{2}$.
Results of magnetic field and temperature dependent neutron diffraction and magnetization measurements on oxy-arsenate Rb$_{2}$Fe$_{2}$O(AsO$_{4}$)$_{2}$ are reported. The crystal structure of this compound contains pseudo-one-dimensional [Fe$_{2}$O$
We describe the local structural properties of the iron oxychalcogenides, La$_2$O$_2$Fe$_2$O$M_2$ ($M$ = S, Se), by using pair distribution function (PDF) analysis applied to total scattering data. Our results of neutron powder diffraction show that
We present the results of structural and magnetic phase comparisons of the iron oxychalcogenides La$_{2}$O$_{2}$Fe$_{2}$O$M$$_{2}$ ($M$ = S, Se). Elastic neutron scattering reveals that $M$ = S and Se have similar nuclear structures at room and low t
Ba(Fe$_{1/2}$Nb$_{1/2}$)O$_{3}$ (BFN) ceramics are considered to be a potential candidate for technological applications owing to their high dielectric constant over a wide range of temperature values. However, there exists considerable discrepancy o
Using complementary polarized and unpolarized single-crystal neutron diffraction, we have investigated the temperature-dependent magnetic structures of Eu$_{0.5}$Ca$_{0.5}$Fe$_{2}$As$_{2}$. Upon 50 % dilution of the Eu sites with isovalent Ca$^{2+}$,